Monday, January 5, 2026

AI Corner: Chat GPT Thinks for Nine Minutes

This morning, I asked Chat GPT a question about Medicare Advantage.   I noted that many state that Medicare Advantage is cost saving for patients, because its premiums are about the same as Medicare Part B, but you get extra benefits (e.g. vision) and don't have to buy a Medigap plan (about $200/mo).  

I suspected that was true, but incomplete.  Traditional Medicare A+B, and MediGap, provide nearly "first dollar" coverage all year.  (There's a Part B deductible, but it's 'starbucks money" compared to other health costs).

But in Medicare Advantage, you may have office copays ($10-20), specialist copay s($30-40), out of network copays (more, or the whole cost if non-covered).   These may reach a $5000 copay cap, adding about $400/month to our total costs of Medicare Advantage (enough to have paid for a Medigap plan).  (And any out of network fees might be a different cap.)

###

I asked Chat GPT if this sounded right and to research it, and it "thought" for nine minutes.   

I clicked on the "thought for 9 minutes" line, and the result is clipped below.  

It's...very, very long.


###

 Thinking

Gathering details on copay/coinsurance structures for MA vs Original + Medigap

I need to gather info on typical copay and coinsurance structures for Medicare Advantage (MA) plans compared to Original Medicare + Medigap. I'll search for details and offer context about copay differences, including premiums, cost-sharing, and coverage examples in HMOs and PPOs. It'll also be good to check ranges for 2025/2026 where possible.

Browsing Medicare Advantage copay structures and cost-sharing
Searching for copay details for office visits

I have KFF's 2025 premiums and out-of-pocket limits, as well as Medicare.gov costs. Now, I need more precise info on typical copays for office visits, like PCP rates. I’ll search specifically for KFF data on these copays to get a detailed breakdown. Let's look up more details!

Searching KFF 2025 Medicare Advantage copays
Searching for average copays for office visits

I still need to find the average copays for MA, like for office visits. Oliver Wyman blog mentions specialist costs of $31 in 2025 and $32 in 2026, but I need more on office visits. Let’s search KFF for "primary care copay" and check if they have cost-sharing details we need.

Searching for Medicare Advantage primary care copays
Looking for copay ranges in KFF Spotlight

I

Opening KFF 2025 Spotlight for copayment data
Searching for KFF cost-sharing details by service

The KFF Spotlight pages have helpful info on premiums and benefits, but I still need cost-sharing details. I’ll search for KFF resources specifically about cost-sharing by service, like for PCP visits. A search like "Medicare Advantage cost sharing by service 2025 KFF physician" might lead to the right data.

Searching KFF resources on Medicare Advantage cost sharing
Looking into CMS cost-sharing data for MA copays

I

Exploring CMS data for Medicare Advantage copays
Exploring cost-sharing resources for typical copays

I found a 2025/2026 zip file with MOOP and cost-sharing limit data. It might include factors beyond typical copays, but it can still help me find statutory max MOOP and max copays for some services. I’ll also consider using plan examples from providers like Kaiser and Blue Shield for typical structures, citing sources like Oliver Wyman as extra context.

Downloading PBP benefits data for analysis

I’m thinking to download the PBP benefits data as a zipped CSV file and use Python for computation. The file might be large, but it’s doable. I can fetch the file using a direct URL, but I need to find the right download link from the CMS PBP benefits page and access it properly.

Fetching CMS PBP benefits data for analysis
Providing copay ranges and maximum MOOP values

To

Providing typical copay and MOOP ranges for 2025/2026
Searching for 2025 PBP benefits dataset download

I

Searching for 2025 PBP benefits dataset download links
Accessing download links from webpage

The

Opening file around specified line numbers
Clicking to download the file

I’ve got the download link for the file, so now I'll click it to fetch the data. It might be a zipped file, but that should be fine for processing once I get it. Let's see how it goes!

Downloading file to container

The web tool gave a strange internal error but still provided the URL. The error might be due to file size, so I’ll use the container to download the file directly. What a relief! I’ll save it to the /mnt/data directory and move forward from there.

Analyzed
Opening and analyzing zip file

I’ll unzip the file and examine its contents in Python to compute the average copays for primary care and specialist services. First, I need to identify the relevant variables in the dataset. I’ll start by opening the zip listing in Python to see what’s inside.

Examining zip file contents
import zipfile, os, pandas as pd, re, numpy as np, textwrap, math, json zip_path="/mnt/data/pbp-benefits-2025.zip" zf=zipfile.ZipFile(zip_path) zf.namelist()[:20], len(zf.namelist())
(['pbp_b10_amb_trans.sas',
  'pbp_b10_amb_trans.txt',
  'pbp_b10_b19b_amb_trans_vbid_uf.sas',
  'pbp_b10_b19b_amb_trans_vbid_uf.txt',
  'pbp_b11_dme_prosth_orth_sup.sas',
  'pbp_b11_dme_prosth_orth_sup.txt',
  'pbp_b12_renal_dialysis.sas',
  'pbp_b12_renal_dialysis.txt',
  'pbp_b13i_b19b_other_services_vbid_ssbci.sas',
  'pbp_b13i_b19b_other_services_vbid_ssbci.txt',
  'pbp_b13i_b19b_services_vbid_ssbci.sas',
  'pbp_b13i_b19b_services_vbid_ssbci.txt',
  'pbp_b13_b19b_other_services_vbid_uf.sas',
  'pbp_b13_b19b_other_services_vbid_uf.txt',
  'pbp_b13_other_services.sas',
  'pbp_b13_other_services.txt',
  'pbp_b14b_b19b_preventive_vbid_uf.sas',
  'pbp_b14b_b19b_preventive_vbid_uf.txt',
  'pbp_b14c_b19b_preventive_vbid_uf.sas',
  'pbp_b14c_b19b_preventive_vbid_uf.txt'],
 156)
Searching for cost-sharing data

The zip contains several .txt files (possibly tab-delimited) and SAS scripts. I need to find the section for cost sharing related to primary care visits, which is likely under filenames like "pbp_b15_b19b_physician_services" or something similar. I'll search for filenames containing "phys" to narrow it down.

Searching for filenames containing "phys"
[f for f in zf.namelist() if 'phys' in f.lower()][:50]
[]
Narrowing down relevant files

I didn’t find any filenames with “phys,” so I’ll broaden the search. Let’s look for filenames containing keywords like “office,” “doctor,” or “pcp.” That might lead me to something relevant for cost sharing on primary care visits. We’ll see what comes up from this search.

Listing files containing specific keywords
keywords=['pcp','doctor','physician','professional','visit','specialist','practitioner','b15','b16'] matches={} for k in keywords: matches[k]=[f for f in zf.namelist() if k in f.lower()][:20] matches
{'pcp': [],
 'doctor': [],
 'physician': [],
 'professional': [],
 'visit': [],
 'specialist': [],
 'practitioner': [],
 'b15': ['pbp_b15_partb_rx_drugs.sas', 'pbp_b15_partb_rx_drugs.txt'],
 'b16': ['pbp_b16_b19b_dental_vbid_uf.sas',
  'pbp_b16_b19b_dental_vbid_uf.txt',
  'pbp_b16_dental.sas',
  'pbp_b16_dental.txt']}
Exploring possible file names

I’m considering that physician services might be inside a file like “pbp_b07a,” so I’ll list all relevant filenames to check. I’ll probably want to inspect the table of contents too, in case there is a general mapping. I’ll also view the zip file’s namelist to spot unique prefixes and narrow it down.

Listing unique file prefixes in zip archive
# gather base names (without extension) bases=sorted(set(os.path.splitext(n)[0] for n in zf.namelist())) bases[:50], bases[-20:], len(bases)
(['PBP_Benefits_2025_dictionary',
  'PlanArea',
  'PlanRegionArea',
  'Readme_PBP_Benefits_2025',
  'pbp_Section_A',
  'pbp_Section_C',
  'pbp_Section_C_OON',
  'pbp_Section_C_POS',
  'pbp_Section_D',
  'pbp_Section_D_OON',
  'pbp_Section_D_opt',
  'pbp_b10_amb_trans',
  'pbp_b10_b19b_amb_trans_vbid_uf',
  'pbp_b11_dme_prosth_orth_sup',
  'pbp_b12_renal_dialysis',
  'pbp_b13_b19b_other_services_vbid_uf',
  'pbp_b13_other_services',
  'pbp_b13i_b19b_other_services_vbid_ssbci',
  'pbp_b13i_b19b_services_vbid_ssbci',
  'pbp_b14_preventive',
  'pbp_b14b_b19b_preventive_vbid_uf',
  'pbp_b14c_b19b_preventive_vbid_uf',
  'pbp_b15_partb_rx_drugs',
  'pbp_b16_b19b_dental_vbid_uf',
  'pbp_b16_dental',
  'pbp_b17_b19b_eye_exams_wear_vbid_uf',
  'pbp_b17_eye_exams_wear',
  'pbp_b18_b19b_hearing_exams_aids_vbid_uf',
  'pbp_b18_hearing_exams_aids',
  'pbp_b19_model_test',
  'pbp_b19a_model_test_vbid_uf',
  'pbp_b19b_model_test_vbid_uf',
  'pbp_b1a_b19a_inpat_hosp_vbid_uf',
  'pbp_b1a_b19b_inpat_hosp_vbid_uf',
  'pbp_b1a_inpat_hosp',
  'pbp_b1b_b19a_inpat_hosp_vbid_uf',
  'pbp_b1b_b19b_inpat_hosp_vbid_uf',
  'pbp_b1b_inpat_hosp',
  'pbp_b20',
  'pbp_b2_b19a_snf_vbid_uf',
  'pbp_b2_b19b_snf_vbid_uf',
  'pbp_b2_snf',
  'pbp_b3_b19b_cardiac_rehab_vbid_uf',
  'pbp_b3_cardiac_rehab',
  'pbp_b4_b19b_emerg_urgent_vbid_uf',
  'pbp_b4_emerg_urgent',
  'pbp_b5_partial_hosp',
  'pbp_b6_home_health',
  'pbp_b7_b19b_health_prof_vbid_uf',
  'pbp_b7_health_prof'],
 ['pbp_step13',
  'pbp_step14',
  'pbp_step16',
  'pbp_step17a',
  'pbp_step17b',
  'pbp_step18a',
  'pbp_step18b',
  'pbp_step18c',
  'pbp_step1_b',
  'pbp_step2',
  'pbp_step20',
  'pbp_step2_b',
  'pbp_step3',
  'pbp_step4',
  'pbp_step7b',
  'pbp_step7f',
  'pbp_step9',
  'pbp_vbid',
  'planArea',
  'planRegionArea'],
 81)
Opening dictionary and readme files

There’s a "PBP_Benefits_2025_dictionary" and a readme file. I’ll extract the dictionary to see the variables, especially the ones related to physician services. It seems like a good idea to also check the readme, so I'll go through some lines with Python for better clarity.

Extracting and reading dictionary and readme files
# Extract and read dictionary and readme import pandas as pd, io, zipfile, textwrap def read_txt_from_zip(name, nrows=30): data=zf.read(name) text=data.decode('utf-8', errors='replace') return "\n".join(text.splitlines()[:nrows]) print(read_txt_from_zip('Readme_PBP_Benefits_2025.txt', 120))
Readme_PBP_Benefits_2025.txt

******
CHANGE LOG:
05/28/2024 - Column length changed from 3 to 4 for these variables -PBP_B16B_BENDESC_OE_NUM,PBP_B16B_BENDESC_DX_NUM,PBP_B16B_BENDESC_ODS_NUM,PBP_B16B_BENDESC_PC_NUM,PBP_B16B_BENDESC_FT_NUM,PBP_B16B_BENDESC_OPS_NUM,PBP_B16C_BENDESC_RS_NUM,PBP_B16C_BENDESC_END_NUM,PBP_B16C_BENDESC_PERI_NUM,PBP_B16C_BENDESC_PRM_NUM,PBP_B16C_BENDESC_MXPR_NUM,PBP_B16C_BENDESC_IMPL_NUM,PBP_B16C_BENDESC_PRF_NUM,PBP_B16C_BENDESC_OMSG_NUM,PBP_B16C_BENDESC_ORTH_NUM,PBP_B16C_BENDESC_AGS_NUM

05/03/2024 - Added 20-S Prescription Drugs Supplemental (Cost Plans Only) to PBP_A_FFS_BID_B_AUTH_CATS,PBP_A_FFS_BID_B_REF_CATS,PBP_A_FFS_BID_C_AUTH_CATS,PBP_A_FFS_BID_C_REF_CATS.

04/05/2024 - Removed files pbp_mrx_gapCoverage, pbp_mrx_dmodel.txt,pbp_mrx_p_vbid.txt,pbp_mrx_ssm.txt.
             Merged files pbp_step16a.txt,pbp_step16b.txt to pbp_step16.txt,
			 Added file pbp_step18c.txt

09/13/2023 readme updates for POS/OON     
           PBP_B20_INSULIN_COINS_MIN_PCT,PBP_B20_INSULIN_COINS_MAX_PCT,PBP_B20_INSULIN_COPAY_MIN,PBP_B20_INSULIN_COPAY_MAX	
           columns added. PBP_B20_COINS_MC_EHC,PBP_B20_COPAY_MC_EHC lookup values changed.

09/01/2023 added files- pbp_step1.txt,pbp_step1_b.txt,pbp_step2.txt,pbp_step2_b.txt,pbp_step3.txt,pbp_step4.txt,
                        pbp_step9.txt,pbp_step13.txt,pbp_step14.txt,pbp_step20.txt.	
           Two columns "Json Question " and "Service category" added to pbp dictionary.		
           pbp_b16a_bendesc_numv_dx column length changed to 4 as per pbp redesign.
           pbp_b19a_states_ehc_vbd_d,pbp_b19b_states_ehc_vbd_d columns added.
******

This zip file contains Plan Benefit Package (PBP) tab delimited text files from the HPMS 
data repository, SAS programs, and files with supporting documentation. The SAS programs 
are compatible with SAS Version 7 or above and the input and library file path names need 
to be changed to your working subdirectory.


The CY 2025 PBP Benefits file provides the universe of PBP data for all active contracts 
and contains all the approved benefit and financial data submitted as part of the CY 2025 
Bid Submission by Medicare Advantage and Part D organizations, including those involved in 
certain demonstration projects and cost plans. The PBP Benfits file is updated quarterly.

Summary of high-level changes made to the CY 2025 PBP DEF files: 

Optional supplemental cost sharing: 

•	In the old PBP, users entered optional supplemental cost sharing in Section B along with their mandatory benefits. 
•	In the new PBP, this cost sharing is entered into the optional supplemental benefit section of the module. To reflect this change, we have added files in the PBP extract to store this cost sharing.  

Authorization and referrals: 

•	In the old PBP, users entered these data at varying benefit levels.  In cases where the data were collected at a "parent" level, but the plan only required authorization or referral for part of the parent benefit, the user would be required to mark authorization and referral as required at the parent level.  
•	In the new PBP, we set up the authorization and referral questions at the same level across all benefits. To limit the number of changes to the CY 2025 PBP data extract, we are rolling up these more granular data to the prior parent benefit levels (i.e., as they were presented in the CY 2023 extracts). 
•	Please note that you can still access the "new" discrete authorization and referral data in the CY 2025 PBP data extract for all benefits with the exception of optional supplemental and VBID.  This more granular data will be stored in the authorization and referral benefit variables previously only used for standard bid but now used for all plans (see pbp_Section_A.txt).

Description values: 

•	We have added variables for "Other, describe" fields. 

Notes: 

•	We have added variables for the additional PBP notes fields. 

Group names:  

•	We have added variables for cost share group names. 

Differential deductibles and Mandatory Supplemental deductibles  (PPOs only):  

•	In the old PBP, users entered PPO deductibles at the parent benefit level.  
•	In the new PBP, these data are collected at the more discrete benefit level.  We have added variables to account for these data.  Note: We are not populating the data at the parent benefit levels in this case. 


IRA changes:  

•	We have made changes to the PBP data extracts to reflect IRA-related changes, such as insulin-specific cost sharing. 

VBID/UF/SSBCI Reduction in Costs Packages: 

•	In the old PBP, the cost sharing (coinsurance, deductible, copayment) was collected in a number of cases at the parent benefit level.
•	In the new PBP, these data are collected at the more discrete benefit level as needed.  We have added variables to account for these data.  Note: We are not populating the data at the parent benefit levels in this case. 

Min/Max variables: 

•	We are mapping code values '1: Yes' and '3: Yes with a min & max' to '1: Yes' in the PBP data extracts.  The min and max columns will always be populated, even when the new PBP has a single value entered.  In that case, the min and max fields will be the same as in prior years.

In some cases, a plan may have created a POS or OON group without completing the data entry, but failed to delete the group. Where this has occurred, the extracts will show an empty column for those POS and OON groups.

PBP Data Dictionary Notes: 

In the data dictionary, we have added a new column that reflects the JSON question that corresponds to the field title.  

1 - We populated the new column with the JSON question from the "PBP Access column to JSON mapping" document posted in the Documentation section of the HPMS landing page. 
2 - Where the variable is a derived value (i.e., appears in the PBP data extract file, but is not part of the PBP module user interface), we populated the JSON question with DERIVED. 
3 - Where the variable in the PBP data extract file is not used in CY 2025, we populated the JSON question with NOT USED.

CY 2025 PBP Benefits Extract Contents:

Text File:                                     SAS Input Statement to Use:
pbp_b1a_inpat_hosp.txt                         pbp_b1a_inpat_hosp.sas
pbp_b1a_b19a_inpat_hosp_vbid_uf.txt	       pbp_b1a_b19a_inpat_hosp_vbid_uf.sas
pbp_b1a_b19b_inpat_hosp_vbid_uf.txt	       pbp_b1a_b19b_inpat_hosp_vbid_uf.sas
pbp_b1b_inpat_hosp.txt			       pbp_b1b_inpat_hosp.sas
pbp_b1b_b19a_inpat_hosp_vbid_uf.txt	       pbp_b1b_b19a_inpat_hosp_vbid_uf.sas
pbp_b1b_b19b_inpat_hosp_vbid_uf.txt	       pbp_b1b_b19b_inpat_hosp_vbid_uf.sas
pbp_b2_snf.txt				       pbp_b2_snf.sas
pbp_b2_b19a_snf_vbid_uf.txt		       pbp_b2_b19a_snf_vbid_uf.sas
pbp_b2_b19b_snf_vbid_uf.txt		       pbp_b2_b19b_snf_vbid_uf.sas
pbp_b3_cardiac_rehab.txt		       pbp_b3_cardiac_rehab.sas
pbp_b3_b19b_cardiac_rehab_vbid_uf.txt	       pbp_b3_b19b_cardiac_rehab_vbid_uf.sas
pbp_b4_emerg_urgent.txt			       pbp_b4_emerg_urgent.sas
pbp_b4_b19b_emerg_urgent_vbid_uf.txt	       pbp_b4_b19b_emerg_urgent_vbid_uf.sas
pbp_b5_partial_hosp.txt			       pbp_b5_partial_hosp.sas
pbp_b6_home_health.txt			       pbp_b6_home_health.sas
pbp_b7_health_prof.txt			       pbp_b7_health_prof.sas
pbp_b7_b19b_health_prof_vbid_uf.txt	       pbp_b7_b19b_health_prof_vbid_uf.sas
pbp_b8_clin_diag_ther.txt		       pbp_b8_clin_diag_ther.sas
pbp_b9_outpat_hosp.txt			       pbp_b9_outpat_hosp.sas
pbp_b9_b19b_outpat_hosp_vbid_uf.txt	       pbp_b9_b19b_outpat_hosp_vbid_uf.sas
pbp_b10_amb_trans.txt			       pbp_b10_amb_trans.sas
pbp_b10_b19b_amb_trans_vbid_uf.txt	       pbp_b10_b19b_amb_trans_vbid_uf.sas
pbp_b11_dme_prosth_orth_sup.txt		       pbp_b11_dme_prosth_orth_sup.sas
pbp_b12_renal_dialysis.txt		       pbp_b12_renal_dialysis.sas
pbp_b13_other_services.txt		       pbp_b13_other_services.sas
pbp_b13_b19b_other_services_vbid_uf.txt	       pbp_b13_b19b_other_services_vbid_uf.sas
pbp_b13i_b19b_services_vbid_ssbci.txt	       pbp_b13i_b19b_services_vbid_ssbci.sas
pbp_b13i_b19b_other_services_vbid_ssbci.txt    pbp_b13i_b19b_other_services_vbid_ssbci.sas
pbp_b14_preventive.txt			       pbp_b14_preventive.sas
Inspecting pbp_b7_health_prof file

The readme file is truncated, but it looks like "pbp_b7_health_prof" could include health professional services, possibly covering both PCP and specialist visits. That seems promising! I’ll open and inspect the first few lines of the "pbp_b7_health_prof.txt" file or dictionary to confirm.

Inspecting first lines of pbp_b7_health_prof.txt
print(read_txt_from_zip('pbp_b7_health_prof.txt', 40))
vices	pbp_b7i_mm_coins_other1_min	pbp_b7i_mm_coins_other1_max	pbp_b7i_mm_coins_other2_min	pbp_b7i_mm_coins_other2_max	pbp_b7i_mm_copay_yn	pbp_b7i_mm_copay_services	pbp_b7i_mm_copay_other1_min	pbp_b7i_mm_copay_other1_max	pbp_b7i_mm_copay_other2_min	pbp_b7i_mm_copay_other2_max	pbp_b7i_mm_auth_yn	pbp_b7i_mm_refer_yn	pbp_b7j_bendesc_yn	pbp_b7j_mc_bendesc_cats	pbp_b7j_maxenr_yn	pbp_b7j_maxenr_amt	pbp_b7j_maxenr_per	pbp_b7j_maxenr_per_d	pbp_b7j_coins_yn	pbp_b7j_coins_pct_mc_min	pbp_b7j_coins_pct_mc_max	pbp_b7j_ded_yn	pbp_b7j_ded_amt	pbp_b7j_copay_yn	pbp_b7j_copay_mc_amt_min	pbp_b7j_copay_mc_amt_max	pbp_b7j_auth_yn	pbp_b7j_refer_yn	pbp_b7k_maxenr_yn	pbp_b7k_maxenr_amt	pbp_b7k_maxenr_per	pbp_b7k_maxenr_per_d	pbp_b7k_coins_yn	pbp_b7k_coins_pct_mc	pbp_b7k_coins_max_pct_mc	pbp_b7k_ded_yn	pbp_b7k_ded_amt	pbp_b7k_copay_yn	pbp_b7k_copay_mc_amt	pbp_b7k_copay_mc_max_amt	pbp_b7k_auth_yn	pbp_b7k_refer_yn
H0016	001	0	1	20	08	H0016_001_0	1																																																																																																																																																																																																																																																						
H0016	003	0	1	20	08	H0016_003_0	1																																																																																																																																																																																																																																																						
H0022	001	0	1	48	05	H0022_001_0	4	2				2			2		2			2																	2				2								2								2		2	2	2				2			2		2			1	2	2														2				2			2		2			2	2	2				2						2		2						2	2	2											2				2						2		2						2	2	2				2			2		2			2	2	2				2						2		2						2	2	2				2			2		2			1	2																							1	7a;7d;7e1;7e2;7g;7h1;7h2;	2				2			2		2			2	2	2				2			2		2			2	2
H0028	007	0	1	01	01	H0028_007_0	4	2				1	20	20	2		2			2																	2				1	010	20	20					2								2		1	2	2				1	20	20	2		2			1	2															2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2											2				1	01	20	20			2		2						1	2	2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2				1	20	20	2		2			1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				1	20	20	2		1	0.00	0.00	2	2	2				1	20	20	2		2			1	2
H0028	014	0	1	01	01	H0028_014_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	35.00	35.00	1	2															2				2			2		1	25.00	25.00	1	2	2				2						2		1	11	40.00	40.00	40.00	40.00	1	2	2											2				2						2		1	01	25.00	25.00			1	2	2				2			2		1	0.00	25.00	1	2	2				2						2		1	11	40.00	40.00	40.00	40.00	1	2	2				2			2		1	35.00	35.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	65.00	2	2	2				2			2		1	40.00	45.00	1	2
H0028	015	0	1	02	01	H0028_015_0	4	2				1	20	20	2		2			2																	2				1	010	20	20					2								2		1	2	2				1	20	20	2		2			1	2															2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2											2				1	01	20	20			2		2						1	2	2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2				1	20	20	2		2			1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				1	20	20	2		1	0.00	45.00	2	2	2				1	20	20	2		2			1	2
H0028	016	0	1	02	01	H0028_016_0	8	2				2			2		1	10.00	10.00	2																	2				2								1	010	15.00	15.00					2		1	2	2				2			2		1	35.00	35.00	1	2															2				2			2		1	50.00	50.00	1	2	2				2						2		1	11	45.00	45.00	45.00	45.00	1	2	2											2				2						2		1	01	50.00	50.00			1	2	2				2			2		1	10.00	50.00	1	2	2				2						2		1	11	45.00	45.00	45.00	45.00	1	2	2				2			2		1	35.00	35.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	50.00	2	2	2				2			2		1	40.00	45.00	1	2
H0028	017	0	1	01	01	H0028_017_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	15.00	15.00					2		1	2	2				2			2		1	25.00	25.00	1	2															2				2			2		1	40.00	40.00	1	2	2				2						2		1	11	40.00	40.00	40.00	40.00	1	2	2											2				2						2		1	01	40.00	40.00			1	2	2				2			2		1	0.00	40.00	1	2	2				2						2		1	11	40.00	40.00	40.00	40.00	1	2	2				2			2		1	25.00	25.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	45.00	2	2	2				2			2		1	40.00	40.00	1	2
H0028	019	0	1	01	01	H0028_019_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	25.00	25.00	1	2															2				2			2		1	25.00	25.00	1	2	2				2						2		1	11	40.00	40.00	40.00	40.00	1	2	1	1	2	2	6	3		2				2				2						2		1	11	25.00	25.00	25.00	25.00	1	2	2				2			2		1	0.00	25.00	1	2	2				2						2		1	11	40.00	40.00	40.00	40.00	1	2	2				2			2		1	25.00	25.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	40.00	40.00	1	2
H0028	021	0	1	01	01	H0028_021_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	15.00	15.00					2		1	2	2				2			2		1	50.00	50.00	1	2															2				2			2		1	30.00	30.00	1	2	2				2						2		1	11	50.00	50.00	50.00	50.00	1	2	1	1	2	2	6	3		2				2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2				2			2		1	0.00	30.00	1	2	2				2						2		1	11	50.00	50.00	50.00	50.00	1	2	2				2			2		1	50.00	50.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	50.00	50.00	1	2
H0028	023	0	1	01	01	H0028_023_0	7	2				2			2		1	0.00	0.00	2																	2				2								1	010	15.00	15.00					2		1	2	2				2			2		1	40.00	40.00	1	2															2				2			2		1	55.00	55.00	1	2	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	1	1	2	2	6	3		2				2				2						2		1	11	55.00	55.00	55.00	55.00	1	2	2				2			2		1	0.00	55.00	1	2	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	2				2			2		1	40.00	40.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	20.00	20.00	1	2
H0028	024	0	1	01	01	H0028_024_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	30.00	30.00	1	2															2				2			2		1	30.00	30.00	1	2	2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	1	1	2	2	6	3		2				2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2				2			2		1	0.00	30.00	1	2	2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2				2			2		1	30.00	30.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	45.00	2	2	2				2			2		1	30.00	30.00	1	2
H0028	025	1	1	01	01	H0028_025_1	4	2				2			2		1	0.00	0.00	1	01	2	2	12	3								2				2				2								1	011	20.00	20.00	20.00	20.00			2		1	2	2				2			2		1	35.00	35.00	1	2															2				2			2		1	35.00	35.00	1	2	2				2						2		1	11	35.00	35.00	35.00	35.00	1	2	1	1	2	2	6	3		2				2				2						2		1	11	35.00	35.00	35.00	35.00	1	2	2				2			2		1	0.00	35.00	1	2	2				2						2		1	11	35.00	35.00	35.00	35.00	1	2	2				2			2		1	35.00	35.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	35.00	35.00	1	2
H0028	025	2	1	01	01	H0028_025_2	4	2				2			2		1	0.00	0.00	1	01	2	2	12	3								2				2				2								1	011	20.00	20.00	20.00	20.00			2		1	2	2				2			2		1	45.00	45.00	1	2															2				2			2		1	35.00	35.00	1	2	2				2						2		1	11	50.00	50.00	50.00	50.00	1	2	1	1	2	2	6	3		2				2				2						2		1	11	35.00	35.00	35.00	35.00	1	2	2				2			2		1	0.00	35.00	1	2	2				2						2		1	11	50.00	50.00	50.00	50.00	1	2	2				2			2		1	45.00	45.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	50.00	50.00	1	2
H0028	027	0	1	01	01	H0028_027_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	25.00	25.00	1	2															2				2			2		1	25.00	25.00	1	2	2				2						2		1	11	45.00	45.00	45.00	45.00	1	2	1	1	2	2	6	3		2				2				2						2		1	11	25.00	25.00	25.00	25.00	1	2	2				2			2		1	0.00	25.00	1	2	2				2						2		1	11	45.00	45.00	45.00	45.00	1	2	2				2			2		1	25.00	25.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	45.00	45.00	1	2
H0028	028	0	1	01	01	H0028_028_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	45.00	45.00	1	2															2				2			2		1	45.00	45.00	1	2	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	1	1	2	2	6	3		2				2				2						2		1	11	45.00	45.00	45.00	45.00	1	2	2				2			2		1	0.00	45.00	1	2	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	2				2			2		1	45.00	45.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	20.00	20.00	1	2
H0028	029	0	1	01	01	H0028_029_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	1	2				2			2		1	20.00	40.00	1	1															2				2			2		1	20.00	20.00	1	1	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	2											2				2						2		1	01	20.00	20.00			1	1	2				2			2		1	0.00	20.00	1	2	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	2				2			2		1	20.00	40.00	1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	65.00	2	2	2				2			2		1	20.00	50.00	1	1
H0028	030	0	1	01	01	H0028_030_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	1	2				2			2		1	20.00	20.00	1	1															2				2			2		1	20.00	20.00	1	1	2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2											2				2						2		1	01	20.00	20.00			1	1	2				2			2		1	0.00	20.00	1	2	2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2				2			2		1	20.00	20.00	1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	65.00	2	2	2				2			2		1	30.00	75.00	1	1
H0028	031	0	1	01	01	H0028_031_0	5	2				1	20	20	2		2			2																	2				1	010	20	20					2								2		1	1	2				1	20	20	2		2			1	1															2				1	20	20	2		2			1	1	2				1	11	20	20	20	20	2		2						1	2	2											2				1	01	20	20			2		2						1	1	2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2				1	20	20	2		2			1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				1	20	20	2		1	0.00	0.00	2	2	2				1	20	20	2		2			1	1
H0028	032	0	1	01	01	H0028_032_0	4	2				1	20	20	2		2			2																	2				1	010	20	20					2								2		1	2	2				1	20	20	2		2			1	2															2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2											2				1	01	20	20			2		2						1	2	2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2				1	20	20	2		2			1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				1	20	20	2		1	0.00	0.00	2	2	2				1	20	20	2		2			1	2
H0028	033	0	1	01	01	H0028_033_0	4	2				1	20	20	2		2			2																	2				1	010	20	20					2								2		1	2	2				1	20	20	2		2			1	2															2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2											2				1	01	20	20			2		2						1	2	2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2				1	20	20	2		2			1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				1	20	20	2		1	0.00	0.00	2	2	2				1	20	20	2		2			1	2
H0028	034	0	1	01	01	H0028_034_0	5	2				1	20	20	2		2			2																	2				1	010	20	20					2								2		1	1	2				1	20	20	2		2			1	1															2				1	20	20	2		2			1	1	2				1	11	20	20	20	20	2		2						1	2	2											2				1	01	20	20			2		2						1	1	2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2				1	20	20	2		2			1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				1	20	20	2		1	0.00	0.00	2	2	2				1	20	20	2		2			1	1
H0028	035	0	1	01	01	H0028_035_0	5	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	1	2				2			2		1	20.00	20.00	1	1															2				2			2		1	20.00	20.00	1	1	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	2											2				2						2		1	01	20.00	20.00			1	1	2				2			2		1	0.00	20.00	1	2	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	2				2			2		1	20.00	20.00	1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	65.00	2	2	2				2			2		1	20.00	100.00	1	1
H0028	036	0	1	01	01	H0028_036_0	4	2				1	20	20	2		2			2																	2				1	010	20	20					2								2		1	1	2				1	20	20	2		2			1	1															2				1	20	20	2		2			1	1	2				1	11	20	20	20	20	2		2						1	2	2											2				1	01	20	20			2		2						1	1	2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2				1	20	20	2		2			1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				1	20	20	2		1	0.00	0.00	2	2	2				1	20	20	2		2			1	1
H0028	037	0	1	01	01	H0028_037_0	5	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	1	2				2			2		1	25.00	25.00	1	1															2				2			2		1	30.00	30.00	1	1	2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2											2				2						2		1	01	30.00	30.00			1	1	2				2			2		1	0.00	30.00	1	2	2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2				2			2		1	25.00	25.00	1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	30.00	50.00	1	1
H0028	039	0	1	01	01	H0028_039_0	5	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	1	2				2			2		1	25.00	25.00	1	1															2				2			2		1	15.00	15.00	1	1	2				2						2		1	11	25.00	25.00	25.00	25.00	1	2	2											2				2						2		1	01	15.00	15.00			1	1	2				2			2		1	0.00	15.00	1	2	2				2						2		1	11	25.00	25.00	25.00	25.00	1	2	2				2			2		1	25.00	25.00	1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	65.00	2	2	2				2			2		1	25.00	50.00	1	1
H0028	041	0	1	01	01	H0028_041_0	5	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	25.00	25.00	1	2															2				2			2		1	20.00	20.00	1	2	2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2											2				2						2		1	01	20.00	20.00			1	2	2				2			2		1	0.00	20.00	1	2	2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2				2			2		1	25.00	25.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	30.00	50.00	1	2
H0028	042	0	1	01	01	H0028_042_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	20.00	20.00	1	2															2				2			2		1	20.00	20.00	1	2	2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2											2				2						2		1	01	20.00	20.00			1	2	2				2			2		1	0.00	20.00	1	2	2				2						2		1	11	30.00	30.00	30.00	30.00	1	2	2				2			2		1	20.00	20.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	65.00	2	2	2				2			2		1	30.00	100.00	1	2
H0028	043	1	1	01	01	H0028_043_1	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	25.00	25.00	1	2															2				2			2		1	20.00	20.00	1	2	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	2											2				2						2		1	01	20.00	20.00			1	2	2				2			2		1	0.00	20.00	1	2	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	2				2			2		1	25.00	25.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	65.00	2	2	2				2			2		1	20.00	100.00	1	2
H0028	043	2	1	01	01	H0028_043_2	5	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	25.00	25.00	1	2															2				2			2		1	20.00	20.00	1	2	2				2						2		1	11	25.00	25.00	25.00	25.00	1	2	2											2				2						2		1	01	20.00	20.00			1	2	2				2			2		1	0.00	20.00	1	2	2				2						2		1	11	25.00	25.00	25.00	25.00	1	2	2				2			2		1	25.00	25.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	25.00	100.00	1	2
H0028	044	0	1	01	01	H0028_044_0	5	2				1	20	20	2		2			2																	2				1	010	20	20					2								2		1	1	2				1	20	20	2		2			1	1															2				1	20	20	2		2			1	1	2				1	11	20	20	20	20	2		2						1	2	2											2				1	01	20	20			2		2						1	1	2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2				1	20	20	2		2			1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				1	20	20	2		1	0.00	0.00	2	2	2				1	20	20	2		2			1	1
H0028	045	0	1	01	01	H0028_045_0	5	2				1	20	20	2		2			2																	2				1	010	20	20					2								2		1	1	2				1	20	20	2		2			1	1															2				1	20	20	2		2			1	1	2				1	11	20	20	20	20	2		2						1	2	2											2				1	01	20	20			2		2						1	1	2				1	20	20	2		2			1	2	2				1	11	20	20	20	20	2		2						1	2	2				1	20	20	2		2			1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				1	20	20	2		1	0.00	0.00	2	2	2				1	20	20	2		2			1	1
H0028	046	0	1	01	01	H0028_046_0	5	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	1	2				2			2		1	20.00	20.00	1	1															2				2			2		1	20.00	20.00	1	1	2				2						2		1	11	25.00	25.00	25.00	25.00	1	2	2											2				2						2		1	01	20.00	20.00			1	1	2				2			2		1	0.00	20.00	1	2	2				2						2		1	11	25.00	25.00	25.00	25.00	1	2	2				2			2		1	20.00	20.00	1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	65.00	2	2	2				2			2		1	25.00	100.00	1	1
H0028	047	0	1	01	01	H0028_047_0	3	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	30.00	30.00	1	2															2				2			2		1	45.00	45.00	1	2	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	1	1	2	2	6	3		2				2				2						2		1	11	45.00	45.00	45.00	45.00	1	2	2				2			2		1	0.00	45.00	1	2	2				2						2		1	11	20.00	20.00	20.00	20.00	1	2	2				2			2		1	30.00	30.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	20.00	20.00	1	2
H0028	048	1	1	01	01	H0028_048_1	8	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	1	2				2			2		1	40.00	40.00	1	1															2				2			2		1	40.00	40.00	1	1	2				2						2		1	11	35.00	35.00	35.00	35.00	1	1	1	1	2	2	6	3		2				2				2						2		1	11	40.00	40.00	40.00	40.00	1	1	2				2			2		1	0.00	40.00	1	2	2				2						2		1	11	35.00	35.00	35.00	35.00	1	1	2				2			2		1	40.00	40.00	1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	35.00	35.00	1	1
H0028	048	2	1	01	01	H0028_048_2	9	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	1	2				2			2		1	45.00	45.00	1	1															2				2			2		1	55.00	55.00	1	1	2				2						2		1	11	30.00	30.00	30.00	30.00	1	1	1	1	2	2	6	3		2				2				2						2		1	11	55.00	55.00	55.00	55.00	1	1	2				2			2		1	0.00	55.00	1	2	2				2						2		1	11	30.00	30.00	30.00	30.00	1	1	2				2			2		1	45.00	45.00	1	1																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	30.00	35.00	1	1
H0028	051	0	1	01	01	H0028_051_0	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	30.00	30.00	1	2															2				2			2		1	40.00	40.00	1	2	2				2						2		1	11	40.00	40.00	40.00	40.00	1	2	2											2				2						2		1	01	40.00	40.00			1	2	2				2			2		1	0.00	40.00	1	2	2				2						2		1	11	40.00	40.00	40.00	40.00	1	2	2				2			2		1	30.00	30.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	65.00	2	2	2				2			2		1	30.00	30.00	1	2
H0028	053	1	1	01	01	H0028_053_1	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	30.00	30.00	1	2															2				2			2		1	40.00	40.00	1	2	2				2						2		1	11	40.00	40.00	40.00	40.00	1	2	2											2				2						2		1	01	40.00	40.00			1	2	2				2			2		1	0.00	40.00	1	2	2				2						2		1	11	40.00	40.00	40.00	40.00	1	2	2				2			2		1	30.00	30.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	40.00	95.00	1	2
H0028	053	3	1	01	01	H0028_053_3	4	2				2			2		1	0.00	0.00	2																	2				2								1	010	20.00	20.00					2		1	2	2				2			2		1	30.00	30.00	1	2															2				2			2		1	50.00	50.00	1	2	2				2						2		1	11	50.00	50.00	50.00	50.00	1	2	2											2				2						2		1	01	50.00	50.00			1	2	2				2			2		1	0.00	50.00	1	2	2				2						2		1	11	50.00	50.00	50.00	50.00	1	2	2				2			2		1	30.00	30.00	1	2																							1	4b;7a;7d;7e1;7e2;7h1;7h2;9c1;9c2;	2				2			2		1	0.00	55.00	2	2	2				2			2		1	40.00	95.00	1	2
Reading large file with pandas

The file seems massive, and the first line appears truncated because of tab delimiters. I’ll try reading it with pandas using the tab delimiter ('\t'). Once the data is extracted, I can identify the columns by reviewing the dictionary file to better understand the structure.

Extracting dictionary for column identification
print(read_txt_from_zip('PBP_Benefits_2025_dictionary.txt', 80))
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
Cell In[7], line 1
----> 1 print(read_txt_from_zip('PBP_Benefits_2025_dictionary.txt', 80))

Cell In[5], line 4, in read_txt_from_zip(name, nrows)
      3 def read_txt_from_zip(name, nrows=30):
----> 4     data=zf.read(name)
      5     text=data.decode('utf-8', errors='replace')
      6     return "\n".join(text.splitlines()[:nrows])

File /usr/lib/python3.11/zipfile.py:1516, in ZipFile.read(self, name, pwd)
   1514 def read(self, name, pwd=None):
   1515     """Return file bytes for name."""
-> 1516     with self.open(name, "r", pwd) as fp:
   1517         return fp.read()

File /usr/lib/python3.11/zipfile.py:1553, in ZipFile.open(self, name, mode, pwd, force_zip64)
   1550     zinfo._compresslevel = self.compresslevel
   1551 else:
   1552     # Get info object for name
-> 1553     zinfo = self.getinfo(name)
   1555 if mode == 'w':
   1556     return self._open_to_write(zinfo, force_zip64=force_zip64)

File /usr/lib/python3.11/zipfile.py:1482, in ZipFile.getinfo(self, name)
   1480 info = self.NameToInfo.get(name)
   1481 if info is None:
-> 1482     raise KeyError(
   1483         'There is no item named %r in the archive' % name)
   1485 return info

KeyError: "There is no item named 'PBP_Benefits_2025_dictionary.txt' in the archive"
Determining dictionary file format

I see the base for the dictionary file exists, but I’m unsure of its extension. It could be in formats like .xlsx or .pdf. I'll list the items that start with "PBP_Benefits" to figure out the exact format and proceed with the appropriate method to open it.

Listing dictionary and README file items
[f for f in zf.namelist() if 'dictionary' in f.lower() or 'readme' in f.lower()][:20]
['PBP_Benefits_2025_dictionary.xlsx', 'Readme_PBP_Benefits_2025.txt']
Reading dictionary in .xlsx format

The dictionary file is an .xlsx. I’ll use pandas to extract and read the data from it. This should help me access and work with the content more effectively. I’ll proceed by loading it into pandas and looking for what’s relevant to the task.

Extracting dictionary from zip and saving file
import openpyxl, pandas as pd, io, numpy as np, zipfile, os dict_bytes = zf.read('PBP_Benefits_2025_dictionary.xlsx') dict_path="/mnt/data/PBP_Benefits_2025_dictionary.xlsx" with open(dict_path,'wb') as f: f.write(dict_bytes) dict_path
'/mnt/data/PBP_Benefits_2025_dictionary.xlsx'
Extracting sheet names from Excel dictionary
# Load sheet names wb=openpyxl.load_workbook(dict_path, read_only=True, data_only=True) wb.sheetnames[:10], len(wb.sheetnames)
(['PBP2025_dictionary (4)'], 1)
Extracting data from Excel with pandas
# Read into pandas df_dict=pd.read_excel(dict_path, sheet_name=wb.sheetnames[0]) df_dict.head(), df_dict.columns, df_dict.shape
(                 FILE                   NAME  TYPE  LENGTH SERVICE CATEGORY  \
 0  pbp_b1a_inpat_hosp          pbp_a_hnumber  CHAR     5.0              NaN   
 1  pbp_b1a_inpat_hosp  pbp_a_plan_identifier  CHAR     3.0              NaN   
 2  pbp_b1a_inpat_hosp             segment_id   NUM     3.0              NaN   
 3  pbp_b1a_inpat_hosp          pbp_a_ben_cov  CHAR     1.0              NaN   
 4  pbp_b1a_inpat_hosp          pbp_a_ben_cov   NaN     NaN              NaN   
 
          FIELD_TITLE JSON QUESTION              TITLE CODES        CODE_VALUES  
 0           H Number           NaN           H Number   NaN                NaN  
 1            Plan ID           NaN            Plan ID   NaN                NaN  
 2         Segment ID           NaN         Segment ID   NaN                NaN  
 3  Coverage Criteria           NaN  Coverage Criteria     1  Part A and Part B  
 4                NaN           NaN                NaN     2        Part B Only  ,
 Index(['FILE', 'NAME', 'TYPE', 'LENGTH', 'SERVICE CATEGORY', 'FIELD_TITLE',
        'JSON QUESTION', 'TITLE', 'CODES', 'CODE_VALUES'],
       dtype='object'),
 (33867, 10))
Locating variables for health professional copays

I need to focus on the health professional services file and identify the variables related to PCP and specialist copays. I'll filter the dictionary dataframe to look for "pbp_b7_health_prof" and check for fields that include "Primary Care." Time to dig into that data now.

Filtering health professional services data
df_b7=df_dict[df_dict['FILE'].str.lower()=='pbp_b7_health_prof'] df_b7.shape, df_b7['FIELD_TITLE'].dropna().head(20).tolist()
((557, 10),
 ['H Number',
  'Plan ID',
  'Segment ID',
  'Coverage Criteria',
  'Plan Type',
  'Organization Type',
  'BID ID (H-number, Plan ID, Segment ID)',
  'Version Number',
  'Does this plan have a service specific maximum enrollee out-of-pocket cost (MOOP)?',
  'MOOP amount',
  'MOOP periodicity',
  'MOOP periodicity description',
  'Is there a coinsurance?',
  'Minimum coinsurance',
  'Maximum coinsurance',
  'Is there a deductible?',
  'Deductible amount',
  'Is there a copayment ?',
  'Minimum copayment',
  'Maximum copayment'])
Searching for primary care service codes

I’ll continue scrolling through the data, as I’m looking for specific service-related codes such as office visits. Let's search within the filtered dataset for any mentions of "primary" in the TITLE or FIELD_TITLE columns to pinpoint relevant information for primary care.

Filtering records for 'primary' in titles
mask = df_b7.apply(lambda r: any(isinstance(r[c], str) and 'primary' in r[c].lower() for c in ['FIELD_TITLE','TITLE','NAME'] if c in df_b7.columns), axis=1) df_b7[mask][['NAME','FIELD_TITLE','TITLE','CODES','CODE_VALUES']].head(30)
                          NAME  \
5025         pbp_b7a_maxenr_yn   
5027        pbp_b7a_maxenr_amt   
5028        pbp_b7a_maxenr_per   
5036          pbp_b7a_coins_yn   
5038  pbp_b7a_coins_pct_mc_min   
5039  pbp_b7a_coins_pct_mc_max   
5040            pbp_b7a_ded_yn   
5042           pbp_b7a_ded_amt   
5043          pbp_b7a_copay_yn   
5045  pbp_b7a_copay_amt_mc_min   
5046  pbp_b7a_copay_amt_mc_max   

                                            FIELD_TITLE  \
5025  Does this plan have a service specific maximum...   
5027                                        MOOP amount   
5028                                   MOOP periodicity   
5036                            Is there a coinsurance?   
5038                                Minimum coinsurance   
5039                                Maximum coinsurance   
5040                             Is there a deductible?   
5042                                  Deductible amount   
5043                             Is there a copayment ?   
5045                                  Minimum copayment   
5046                                  Maximum copayment   

                              TITLE CODES        CODE_VALUES  
5025        Primary Care Max Enr YN     1                Yes  
5027       Primary Care Max Enr Amt   NaN                NaN  
5028       Primary Care Max Enr Per     1  Every three years  
5036    Primary Care Coinsurance YN     1                Yes  
5038  Primary Care MC Min Coins Pct   NaN                NaN  
5039  Primary Care MC Max Coins Pct   NaN                NaN  
5040     Primary Care Deductible YN     1                Yes  
5042    Primary Care Deductible Amt   NaN                NaN  
5043      Primary Care Copayment YN     1                Yes  
5045  Primary Care MC Min Copay Amt   NaN                NaN  
5046  Primary Care MC Max Copay Amt   NaN                NaN  
Finding specialist copay information

I see that I have variables like pbp_b7a_copay_amt_mc_min/max for primary care—likely an office visit. This could involve both PCP and specialist care. There are categories for primary care (b7a) and possibly specialists (b7b). I'll search for "specialist" to narrow down the relevant data.

Searching for specialist references in data
mask = df_b7.apply(lambda r: any(isinstance(r[c], str) and 'specialist' in r[c].lower() for c in ['FIELD_TITLE','TITLE','NAME']), axis=1) df_b7[mask][['NAME','FIELD_TITLE','TITLE','CODES','CODE_VALUES']].head(40)
Empty DataFrame
Columns: [NAME, FIELD_TITLE, TITLE, CODES, CODE_VALUES]
Index: []
Searching for specialty or specialist data

It seems that "specialist" could also be labeled as "Specialist (including physician specialists)" or similar. To capture all possibilities, I'll search for terms like "specialty" or "special." That should help me find the exact data related to specialist services and copays.

Counting occurrences of specialty-related terms
for term in ['specialty','specialist','physician','professional','outpatient','mental','chiropractic','podiatry','ophthalmology']: m=df_b7.apply(lambda r: any(isinstance(r[c], str) and term in r[c].lower() for c in ['FIELD_TITLE','TITLE','NAME']), axis=1) print(term, m.sum())
specialty 2
specialist 0
physician 0
professional 0
outpatient 0
mental 4
chiropractic 20
podiatry 5
ophthalmology 0
Checking for specialty term

It looks like there’s another specialty term to consider. I'll check this second term and see if it's relevant. This should give me a better idea of how to refine the data concerning specialist services, focusing on all possible variations of the term.

Filtering specialty term occurrences in dataset
m=df_b7.apply(lambda r: any(isinstance(r[c], str) and 'specialty' in r[c].lower() for c in ['FIELD_TITLE','TITLE','NAME']), axis=1) df_b7[m][['NAME','FIELD_TITLE','TITLE','CODES','CODE_VALUES']]
                   NAME                                        FIELD_TITLE  \
5222  pbp_b7e_coins_ehc  Which Mental Health Specialty Services have a ...   
5233  pbp_b7e_copay_ehc  Which Mental Health Specialty Services have a ...   

                    TITLE   CODES                           CODE_VALUES  
5222   MH Specialty Coins  1 in 2  Medicare-covered Individual Sessions  
5233  MH Specialty Copays  1 in 2  Medicare-covered Individual Sessions  
Examining variable prefixes for b7 sections

It looks like the mental health services are separate, not specialist visits. Those might be in different sections like "pbp_b7b" or "pbp_b7c." I should check all the variable titles for the b7 sections quickly and look for distinct prefixes like pbp_b7a and pbp_b7b to identify the relevant ones.

Identifying unique prefixes in b7 sections
# extract prefixes like pbp_b7a, pbp_b7b etc from NAME prefixes=sorted(set(re.match(r'(pbp_b7[a-z0-9]+)', n.lower()).group(1) for n in df_b7['NAME'].dropna().astype(str).str.lower() if re.match(r'(pbp_b7[a-z0-9]+)', n.lower()))) prefixes[:50], len(prefixes)
(['pbp_b7a',
  'pbp_b7b',
  'pbp_b7c',
  'pbp_b7d',
  'pbp_b7e',
  'pbp_b7f',
  'pbp_b7g',
  'pbp_b7h',
  'pbp_b7i',
  'pbp_b7j',
  'pbp_b7k'],
 11)
Identifying b7 section titles

It looks like I need to figure out what each b7 section represents. b7a seems to be about primary care, and b7b might be for specialists. I’ll check the titles in b7b by filtering for variable names that start with "pbp_b7b" and look at the unique TITLE values to confirm.

Inspecting b7b section titles and unique values
df_b7b=df_b7[df_b7['NAME'].astype(str).str.lower().str.startswith('pbp_b7b')] df_b7b[['NAME','TITLE','FIELD_TITLE']].head(30), df_b7b['TITLE'].dropna().unique()[:20], df_b7b.shape
(                            NAME                       TITLE  \
 5047          pbp_b7b_bendesc_yn    Chiropractic Ben Desc YN   
 5048          pbp_b7b_bendesc_yn                         NaN   
 5049         pbp_b7b_bendesc_ehc  Chiropractic Supp Ben Desc   
 5050         pbp_b7b_bendesc_ehc                         NaN   
 5051      pbp_b7b_bendesc_amo_rc        Routine care Ben AMO   
 5052      pbp_b7b_bendesc_amo_rc                         NaN   
 5053      pbp_b7b_bendesc_amo_rc                         NaN   
 5054      pbp_b7b_bendesc_lim_rc          Routine care Limit   
 5055      pbp_b7b_bendesc_lim_rc                         NaN   
 5056      pbp_b7b_bendesc_num_rc      Routine care Limit Num   
 5057      pbp_b7b_bendesc_per_rc            Routine care Per   
 5058      pbp_b7b_bendesc_per_rc                         NaN   
 5059      pbp_b7b_bendesc_per_rc                         NaN   
 5060      pbp_b7b_bendesc_per_rc                         NaN   
 5061      pbp_b7b_bendesc_per_rc                         NaN   
 5062      pbp_b7b_bendesc_per_rc                         NaN   
 5063      pbp_b7b_bendesc_per_rc                         NaN   
 5064    pbp_b7b_bendesc_per_rc_d       Routine care Per Desc   
 5065  pbp_b7b_addl_service_other          Other service name   
 5066   pbp_b7b_bendesc_amo_other       Other service Ben AMO   
 5067   pbp_b7b_bendesc_amo_other                         NaN   
 5068   pbp_b7b_bendesc_amo_other                         NaN   
 5069   pbp_b7b_bendesc_lim_other         Other service Limit   
 5070   pbp_b7b_bendesc_lim_other                         NaN   
 5071   pbp_b7b_bendesc_num_other     Other service Limit Num   
 5072   pbp_b7b_bendesc_per_other           Other service Per   
 5073   pbp_b7b_bendesc_per_other                         NaN   
 5074   pbp_b7b_bendesc_per_other                         NaN   
 5075   pbp_b7b_bendesc_per_other                         NaN   
 5076   pbp_b7b_bendesc_per_other                         NaN   
 
                                             FIELD_TITLE  
 5047  Does the plan provide Chiropractic Services as...  
 5048                                                NaN  
 5049                             Enhanced benefits (7b)  
 5050                                                NaN  
 5051                   Type of benefit for Routine Care  
 5052                                                NaN  
 5053                                                NaN  
 5054        Is this benefit unlimited for Routine Care?  
 5055                                                NaN  
 5056                  Number of visits for Routine Care  
 5057                           Routine Care periodicity  
 5058                                                NaN  
 5059                                                NaN  
 5060                                                NaN  
 5061                                                NaN  
 5062                                                NaN  
 5063                                                NaN  
 5064               Routine Care periodicity description  
 5065                        Enter Name of Other Service  
 5066                  Type of benefit for Other Service  
 5067                                                NaN  
 5068                                                NaN  
 5069       Is this benefit unlimited for Other Service?  
 5070                                                NaN  
 5071                 Number of visits for Other Service  
 5072                          Other Service periodicity  
 5073                                                NaN  
 5074                                                NaN  
 5075                                                NaN  
 5076                                                NaN  ,
 array(['Chiropractic Ben Desc YN', 'Chiropractic Supp Ben Desc',
        'Routine care Ben AMO', 'Routine care Limit',
        'Routine care Limit Num', 'Routine care Per',
        'Routine care Per Desc', 'Other service name',
        'Other service Ben AMO', 'Other service Limit',
        'Other service Limit Num', 'Other service Per',
        'Other service Per Desc', 'Chiropractic Max Plan YN',
        'Chiropractic Max Plan Amt', 'Chiropractic Max Plan Per',
        'Chiro Max Plan Per Desc', 'Chiropractic Max Enr YN',
        'Chiropractic Max Enr Amt', 'Chiropractic Max Enr Per'],
       dtype=object),
 (84, 10))
Exploring b7b and b7c categories

It seems like b7b is related to chiropractic services, so specialist visits might not be included here. I’ll check b7f or perhaps b7c for the specialist-related information. Let’s take a look at the titles in b7c and see what we find.

Checking b7c titles in dataset
df_b7c=df_b7[df_b7['NAME'].astype(str).str.lower().str.startswith('pbp_b7c')] df_b7c['TITLE'].dropna().unique()[:50], df_b7c.shape
(array(['Occ Therapy Max Enr YN', 'Occ Therapy Max Enr Amt',
        'Occ Therapy Max Enr Per', 'Occ Tx Max Enr Per Desc',
        'Occ Therapy Coinsurance YN', 'Occ Ther MC MIN Coins Pct',
        'Occ Ther MC MAX Coins Pct', 'Occ Therapy Deductible YN',
        'Occ Therapy Deductible Amt', 'Occ Therapy Copayment YN',
        'Occ Ther MC MIN Copay Amt', 'Occ Ther MC MAX Copay Amt',
        'Occ Therapy Auth YN', 'Occ Therapy Referral YN',
        'NM OT MM Services YN', 'NM OT MM Service Name',
        'NM OT MM Max Plan YN', 'NM OT MM Max Plan Amt',
        'NM OT MM Max Plan Per', 'NM OT MM Max Pln Per Desc',
        'NM OT MM Coinsurance YN', 'NM OT MM Min Coinsurance Pct',
        'NM OT MM Max Coinsurance Pct', 'NM OT MM Copayment YN',
        'NM OT MM MIN Copay Amt', 'NM OT MM MAX Copay Amt',
        'NM OT MM Enrollee Auth', 'NM OT MM Referral YN'], dtype=object),
 (52, 10))
Inspecting roles and titles in the b7 sections

b7c seems to cover occupational therapy, and b7d might be speech therapy. b7e looks like it's related to mental health. I know b7a is primary care, but I need to find which section covers specialist and possibly mental health/psychiatry. Maybe b7g has the specialist details. Let me quickly check.

Inspecting titles for specialist categories
for pref in prefixes: sub=df_b7[df_b7['NAME'].astype(str).str.lower().str.startswith(pref)] titles=sub['TITLE'].dropna().unique() # show first few titles print(pref, "n_titles", len(titles), "sample", list(titles[:6]))
pbp_b7a n_titles 12 sample ['Primary Care Max Enr YN', 'Primary Care Max Enr Amt', 'Primary Care Max Enr Per', 'Prim Care Max Enr Per Desc', 'Primary Care Coinsurance YN', 'Primary Care MC Min Coins Pct']
pbp_b7b n_titles 41 sample ['Chiropractic Ben Desc YN', 'Chiropractic Supp Ben Desc', 'Routine care Ben AMO', 'Routine care Limit', 'Routine care Limit Num', 'Routine care Per']
pbp_b7c n_titles 28 sample ['Occ Therapy Max Enr YN', 'Occ Therapy Max Enr Amt', 'Occ Therapy Max Enr Per', 'Occ Tx Max Enr Per Desc', 'Occ Therapy Coinsurance YN', 'Occ Ther MC MIN Coins Pct']
pbp_b7d n_titles 14 sample ['Phys Spclist Max Enr YN', 'Phys Spclist Max Enr Amt', 'Phys Spclist Max Enr Per', 'Phys Spc Max Enr Per Desc', 'Phys Spclist Coinsurance YN', 'Phys Spclist Min MC Coins Pct']
pbp_b7e n_titles 20 sample ['MH Max Enr YN', 'MH Max Enr Amt', 'MH Max Enr Per', 'MH Max Enr Per Desc', 'MH Coinsurance YN', 'MH Specialty Coins']
pbp_b7f n_titles 31 sample ['Podiatrist Ben Desc YN', 'Podiatrist RF Ben Desc Enhance', 'Podiatrist RF Ben Desc AMO', 'Podiatrist RF Ben Desc Lim YN', 'Podiatrist RF Ben Desc Amt', 'Podiatrist RF Ben Desc Per']
pbp_b7g n_titles 14 sample ['Oth Hlth Care Max Enr YN', 'Oth Hlth Care Max Enr Amt', 'Oth Hlth Care Max Enr Per', 'Oth Hlth Cr Max Enr Per Desc', 'Oth Hlth Care Coinsurance YN', 'Oth Hlth Care MC Min Coins Pct']
pbp_b7h n_titles 20 sample ['Psych Max Enr YN', 'Psych Max Enr Amt', 'Psych Max Enr Per', 'Psych Max Enr Per Desc', 'Psych Coinsurance YN', 'Psychiatric Services Coins']
pbp_b7i n_titles 34 sample ['PT/SP Srvs Max Enr YN', 'PT/SP Srvs Max Enr Amt', 'PT/SP Srvs Max Enr Per', 'PT/SP Srvs Max Enr Per Desc', 'PT/SP Srvs Coinsurance YN', 'PT/SP Coins MC Min']
pbp_b7j n_titles 16 sample ['Telehealth Ben Desc YN', 'Telehealth services', 'Telehealth Max Enr YN', 'Telehealth Max Enr Amt', 'Telehealth Max Enr Per', 'Telehealth Max Enr Per Desc']
pbp_b7k n_titles 14 sample ['Opi Treat Max Enr YN', 'Opi Treat Max Enr Amt', 'Opi Treat Max Enr Per', 'Opi Treat Max Enr Per Desc', 'Opi Treat Coinsurance YN', 'Opi Treat MC Min Coins Pct']
Extracting data from b7_health_prof.txt

Awesome! I’ve identified that b7d corresponds to physician specialist services, so I'll use the pbp_b7d_copay amounts. Now, I need to compute the distribution of copay amounts for both PCPs and specialists across plans. I'll load the file pbp_b7_health_prof.txt using pandas, selecting the relevant columns for b7a and b7d. I’ll determine the exact column names and read the file using pandas read_csv with '\t' as the separator. Let's extract the file and begin reading.

Computing PCP and specialist copay distributions
# Extract b7 file to disk b7_path="/mnt/data/pbp_b7_health_prof.txt" with open(b7_path,'wb') as f: f.write(zf.read('pbp_b7_health_prof.txt')) # Read with pandas b7=pd.read_csv(b7_path, sep='\t', dtype=str, low_memory=False) b7.shape, b7.columns[:30]
((7570, 254),
 Index(['pbp_a_hnumber', 'pbp_a_plan_identifier', 'segment_id', 'pbp_a_ben_cov',
        'pbp_a_plan_type', 'orgtype', 'bid_id', 'version', 'pbp_b7a_maxenr_yn',
        'pbp_b7a_maxenr_amt', 'pbp_b7a_maxenr_per', 'pbp_b7a_maxenr_per_d',
        'pbp_b7a_coins_yn', 'pbp_b7a_coins_pct_mc_min',
        'pbp_b7a_coins_pct_mc_max', 'pbp_b7a_ded_yn', 'pbp_b7a_ded_amt',
        'pbp_b7a_copay_yn', 'pbp_b7a_copay_amt_mc_min',
        'pbp_b7a_copay_amt_mc_max', 'pbp_b7b_bendesc_yn', 'pbp_b7b_bendesc_ehc',
        'pbp_b7b_bendesc_amo_rc', 'pbp_b7b_bendesc_lim_rc',
        'pbp_b7b_bendesc_num_rc', 'pbp_b7b_bendesc_per_rc',
        'pbp_b7b_bendesc_per_rc_d', 'pbp_b7b_addl_service_other',
        'pbp_b7b_bendesc_amo_other', 'pbp_b7b_bendesc_lim_other'],
       dtype='object'))
Extracting primary care and specialist copay data

I can compute the primary care copay amounts using pbp_b7a_copay_amt_mc_min/max, where the copay_yn field shows '1' for yes. The values might be numeric but stored as strings, with many entries being '0'. I'll convert them to floats. Now, I need to check the column names for physician specialist data. Let's do that next.

Evaluating primary care and specialist columns
[c for c in b7.columns if c.startswith('pbp_b7d')][:30]
['pbp_b7d_maxenr_yn',
 'pbp_b7d_maxenr_amt',
 'pbp_b7d_maxenr_per',
 'pbp_b7d_maxenr_per_d',
 'pbp_b7d_coins_yn',
 'pbp_b7d_coins_pct_mc_min',
 'pbp_b7d_coins_pct_mc_max',
 'pbp_b7d_ded_yn',
 'pbp_b7d_ded_amt',
 'pbp_b7d_copay_yn',
 'pbp_b7d_copay_amt_mc_min',
 'pbp_b7d_copay_amt_mc_max',
 'pbp_b7d_auth_yn',
 'pbp_b7d_refer_yn']
Summarizing copay distribution and additional costs

I’ll summarize the distribution of copays, focusing on the percentage with $0 for PCP and typical amounts (median) for those with copays. Many plans show copay max, so we'll use the median of the max values. We'll also compute inpatient, ER, and outpatient surgery costs from relevant datasets. Let's simplify by computing the main categories, mentioning variations, and adding a few other key costs. I'll use the PBP datasets, being mindful they include nationwide plans, including SNPs.

Computing Medicare copayments and MOOP distributions
# Extract section C secC_path="/mnt/data/pbp_Section_C.txt" with open(secC_path,'wb') as f: f.write(zf.read('pbp_Section_C.txt')) secC=pd.read_csv(secC_path, sep='\t', dtype=str, low_memory=False) secC.shape, secC.columns[:40]
((7045, 222),
 Index(['pbp_a_hnumber', 'pbp_a_plan_identifier', 'segment_id', 'pbp_a_ben_cov',
        'pbp_a_plan_type', 'orgtype', 'bid_id', 'version', 'pbp_c_oon_yn',
        'pbp_c_oon_bendesc_bens', 'pbp_c_oon_mc_bendesc_cats',
        'pbp_c_oon_nmc_bendesc_cats', 'pbp_c_oon_coins_ihs_yn',
        'pbp_c_oon_coins_ihs_ben_type', 'pbp_c_oon_coins_iha_mc_cost_yn',
        'pbp_c_oon_coins_iha_pct', 'pbp_c_oon_coins_iha_intrvl_num',
        'pbp_c_oon_coins_iha_pct_i1', 'pbp_c_oon_coins_iha_bgnd_i1',
        'pbp_c_oon_coins_iha_endd_i1', 'pbp_c_oon_coins_iha_pct_i2',
        'pbp_c_oon_coins_iha_bgnd_i2', 'pbp_c_oon_coins_iha_endd_i2',
        'pbp_c_oon_coins_iha_pct_i3', 'pbp_c_oon_coins_iha_bgnd_i3',
        'pbp_c_oon_coins_iha_endd_i3', 'pbp_c_oon_coins_iph_mc_cost_yn',
        'pbp_c_oon_coins_iph_pct', 'pbp_c_oon_coins_iph_intrvl_num',
        'pbp_c_oon_coins_iph_pct_i1', 'pbp_c_oon_coins_iph_bgnd_i1',
        'pbp_c_oon_coins_iph_endd_i1', 'pbp_c_oon_coins_iph_pct_i2',
        'pbp_c_oon_coins_iph_bgnd_i2', 'pbp_c_oon_coins_iph_endd_i2',
        'pbp_c_oon_coins_iph_pct_i3', 'pbp_c_oon_coins_iph_bgnd_i3',
        'pbp_c_oon_coins_iph_endd_i3', 'pbp_c_oon_copay_ihs_yn',
        'pbp_c_oon_copay_ihs_ben_type'],
       dtype='object'))
Checking for MOOP data in Section A

It seems like Section C deals with out-of-network (OON) costs, but it might not include the MOOP data. I believe there’s a separate file for MOOP in Section A. I'll check the README to confirm which section provides MOOP data, then verify by looking at Section A columns quickly.

Inspecting Section A columns
secA_path="/mnt/data/pbp_Section_A.txt" with open(secA_path,'wb') as f: f.write(zf.read('pbp_Section_A.txt')) secA=pd.read_csv(secA_path, sep='\t', dtype=str, low_memory=False) secA.shape, secA.columns[:60]
---------------------------------------------------------------------------
UnicodeDecodeError                        Traceback (most recent call last)
Cell In[24], line 3
      1 secA_path="/mnt/data/pbp_Section_A.txt"
      2 with open(secA_path,'wb') as f: f.write(zf.read('pbp_Section_A.txt'))
----> 3 secA=pd.read_csv(secA_path, sep='\t', dtype=str, low_memory=False)
      4 secA.shape, secA.columns[:60]

File /opt/pyvenv/lib/python3.11/site-packages/pandas/io/parsers/readers.py:1026, in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend)
   1013 kwds_defaults = _refine_defaults_read(
   1014     dialect,
   1015     delimiter,
   (...)   1022     dtype_backend=dtype_backend,
   1023 )
   1024 kwds.update(kwds_defaults)
-> 1026 return _read(filepath_or_buffer, kwds)

File /opt/pyvenv/lib/python3.11/site-packages/pandas/io/parsers/readers.py:626, in _read(filepath_or_buffer, kwds)
    623     return parser
    625 with parser:
--> 626     return parser.read(nrows)

File /opt/pyvenv/lib/python3.11/site-packages/pandas/io/parsers/readers.py:1923, in TextFileReader.read(self, nrows)
   1916 nrows = validate_integer("nrows", nrows)
   1917 try:
   1918     # error: "ParserBase" has no attribute "read"
   1919     (
   1920         index,
   1921         columns,
   1922         col_dict,
-> 1923     ) = self._engine.read(  # type: ignore[attr-defined]
   1924         nrows
   1925     )
   1926 except Exception:
   1927     self.close()

File /opt/pyvenv/lib/python3.11/site-packages/pandas/io/parsers/c_parser_wrapper.py:239, in CParserWrapper.read(self, nrows)
    236         data = _concatenate_chunks(chunks)
    238     else:
--> 239         data = self._reader.read(nrows)
    240 except StopIteration:
    241     if self._first_chunk:

File parsers.pyx:820, in pandas._libs.parsers.TextReader.read()

File parsers.pyx:914, in pandas._libs.parsers.TextReader._read_rows()

File parsers.pyx:891, in pandas._libs.parsers.TextReader._check_tokenize_status()

File parsers.pyx:2053, in pandas._libs.parsers.raise_parser_error()

UnicodeDecodeError: 'utf-8' codec can't decode byte 0x96 in position 24721: invalid start byte
Reading with correct encoding

It looks like Section A might be using Windows encoding, so I'll read the file with encoding='latin1' to ensure the data comes through correctly. This should help avoid any issues with special characters or misinterpretation while processing the file.

Reading file with latin1 encoding
secA=pd.read_csv(secA_path, sep='\t', dtype=str, low_memory=False, encoding='latin1') secA.shape, secA.columns[:40]
((8328, 89),
 Index(['pbp_a_hnumber', 'pbp_a_plan_identifier', 'segment_id', 'pbp_a_ben_cov',
        'pbp_a_plan_type', 'orgtype', 'bid_id', 'version',
        'pbp_a_contract_partd_flag', 'pbp_a_platino_flag', 'pbp_a_snp_pct',
        'pbp_a_vbid_indicator', 'pbp_a_BPT_MA_date_time',
        'pbp_a_BPT_PD_date_time', 'pbp_a_BPT_MSA_date_time',
        'pbp_a_BPT_ESRD_date_time', 'pbp_a_upload_date_time', 'pbp_a_org_name',
        'pbp_a_org_marketing_name', 'pbp_a_org_website', 'pbp_a_plan_name',
        'pbp_a_org_type', 'pbp_a_plan_type.1', 'pbp_a_network_flag',
        'pbp_a_ben_cov.1', 'pbp_a_hospice_care_yn', 'pbp_a_plan_geog_name',
        'pbp_a_segment_name', 'pbp_a_eghp_yn', 'pbp_a_est_memb',
        'pbp_a_continue_yn', 'pbp_a_continue_costshare_yn', 'pbp_a_platino_yn',
        'pbp_a_special_need_flag', 'pbp_a_special_need_plan_type',
        'pbp_a_snp_institutional_type', 'pbp_a_dsnp_zerodollar',
        'pbp_a_snp_cond', 'pbp_a_snp_state_cvg_yn', 'pbp_a_pharmacy_website'],
       dtype='object'))
Merging data for weighted analysis

I can use the membership estimates from Section A to weight copays based on enrollment, which will give more accurate results. I'll determine unique keys for merging, making sure the plan and segment IDs are consistent. It looks like there are duplicates in the benefit coverage columns, so I'll pick the right one to merge on and filter for MA plans. We can then apply enrollment weights based on the membership data.

Merging data with membership weights
# Prepare weights from secA secA_key=secA[['pbp_a_hnumber','pbp_a_plan_identifier','segment_id','pbp_a_ben_cov','pbp_a_plan_type','pbp_a_eghp_yn','pbp_a_special_need_flag','pbp_a_est_memb']].copy() # convert membership to numeric secA_key['pbp_a_est_memb_num']=pd.to_numeric(secA_key['pbp_a_est_memb'], errors='coerce') secA_key.shape, secA_key['pbp_a_est_memb_num'].describe()
((8328, 9),
 count    1.582000e+03
 mean     4.741403e+04
 std      4.265430e+05
 min      0.000000e+00
 25%      0.000000e+00
 50%      3.250000e+02
 75%      1.453000e+03
 max      7.991960e+06
 Name: pbp_a_est_memb_num, dtype: float64)
Merging for unweighted baseline

It looks like there are only 1582 non-null membership values, probably just for plans where membership was reported. Still, I can use this as an approximation for now. I'll compute the unweighted baseline first and then merge the data from Section A with the weights.

Merging membership data with weights
# Merge merge_cols=['pbp_a_hnumber','pbp_a_plan_identifier','segment_id','pbp_a_ben_cov'] b7m=b7.merge(secA_key[['pbp_a_hnumber','pbp_a_plan_identifier','segment_id','pbp_a_ben_cov','pbp_a_est_memb_num','pbp_a_plan_type','pbp_a_eghp_yn','pbp_a_special_need_flag']], on=merge_cols, how='left', suffixes=('','_A')) b7m.shape, b7m['pbp_a_est_memb_num'].notna().mean()
((7570, 258), 0.20898282694848083)
Calculating PCP copay based on copay or coinsurance

Around 21% of plans have membership weights, so I'll use both weighted and unweighted calculations, mentioning weights where applicable. To compute the PCP copay, I'll focus on the Medicare-covered primary care, considering both copay and coinsurance options. If both exist, I'll prioritize copay for worst-case scenarios and calculate typical amounts, including those with $0 copay. We'll also compute for specialist care similarly.

Computing Medicare copay and coinsurance amounts
def summarize_costshare(df, copay_yn_col, copay_max_col, coins_yn_col, coins_max_col, weight_col=None): d=df.copy() d[copay_yn_col]=pd.to_numeric(d[copay_yn_col], errors='coerce') d[coins_yn_col]=pd.to_numeric(d[coins_yn_col], errors='coerce') d[copay_max_col]=pd.to_numeric(d[copay_max_col], errors='coerce') d[coins_max_col]=pd.to_numeric(d[coins_max_col], errors='coerce') # consider only Part A&B coverage (pbp_a_ben_cov==1) # in data it's str; convert d['ben_cov']=pd.to_numeric(d['pbp_a_ben_cov'], errors='coerce') d=d[d['ben_cov']==1] # identify copay-based rows copay_rows=d[d[copay_yn_col]==1] coins_rows=d[d[coins_yn_col]==1] # weighted counts if weight_col and weight_col in d.columns: w=pd.to_numeric(d[weight_col], errors='coerce').fillna(0) w_total=w.sum() def wshare(mask): return w[mask].sum()/w_total if w_total>0 else np.nan wcopay0 = wshare((d[copay_yn_col]==1)&(d[copay_max_col]==0)) wcopay = wshare(d[copay_yn_col]==1) wcoins = wshare(d[coins_yn_col]==1) else: wcopay0= wcopay = wcoins = np.nan # unweighted shares total=len(d) share_copay = (d[copay_yn_col]==1).mean() share_copay0 = ((d[copay_yn_col]==1)&(d[copay_max_col]==0)).mean() share_coins = (d[coins_yn_col]==1).mean() # stats among copay plans copay_vals=copay_rows[copay_max_col].dropna() copay_pos=copay_vals[copay_vals>0] stats={ 'n_total': total, 'share_copay': share_copay, 'share_copay0': share_copay0, 'share_coins': share_coins, 'copay_median_all': float(copay_vals.median()) if len(copay_vals)>0 else np.nan, 'copay_p25': float(copay_vals.quantile(0.25)) if len(copay_vals)>0 else np.nan, 'copay_p75': float(copay_vals.quantile(0.75)) if len(copay_vals)>0 else np.nan, 'copay_median_pos': float(copay_pos.median()) if len(copay_pos)>0 else np.nan, 'copay_pos_p25': float(copay_pos.quantile(0.25)) if len(copay_pos)>0 else np.nan, 'copay_pos_p75': float(copay_pos.quantile(0.75)) if len(copay_pos)>0 else np.nan, 'coinsurance_median': float(coins_rows[coins_max_col].dropna().median()) if len(coins_rows)>0 else np.nan, 'coinsurance_p75': float(coins_rows[coins_max_col].dropna().quantile(0.75)) if len(coins_rows)>0 else np.nan, 'weighted_share_copay': wcopay, 'weighted_share_copay0': wcopay0, 'weighted_share_coins': wcoins, } return stats pcp_stats=summarize_costshare(b7m,'pbp_b7a_copay_yn','pbp_b7a_copay_amt_mc_max','pbp_b7a_coins_yn','pbp_b7a_coins_pct_mc_max', weight_col='pbp_a_est_memb_num') spec_stats=summarize_costshare(b7m,'pbp_b7d_copay_yn','pbp_b7d_copay_amt_mc_max','pbp_b7d_coins_yn','pbp_b7d_coins_pct_mc_max', weight_col='pbp_a_est_memb_num') pcp_stats, spec_stats
({'n_total': 7413,
  'share_copay': 0.44637798462161066,
  'share_copay0': 0.38796708485093756,
  'share_coins': 0.27303385943612574,
  'copay_median_all': 0.0,
  'copay_p25': 0.0,
  'copay_p75': 0.0,
  'copay_median_pos': 10.0,
  'copay_pos_p25': 5.0,
  'copay_pos_p75': 10.0,
  'coinsurance_median': 20.0,
  'coinsurance_p75': 20.0,
  'weighted_share_copay': 0.0044886253565546924,
  'weighted_share_copay0': 0.0,
  'weighted_share_coins': 0.9431863232285507},
 {'n_total': 7413,
  'share_copay': 0.6102792391744233,
  'share_copay0': 0.046539862403885066,
  'share_coins': 0.2912451099419938,
  'copay_median_all': 30.0,
  'copay_p25': 20.0,
  'copay_p75': 40.0,
  'copay_median_pos': 35.0,
  'copay_pos_p25': 25.0,
  'copay_pos_p75': 40.0,
  'coinsurance_median': 20.0,
  'coinsurance_p75': 20.0,
  'weighted_share_copay': 0.017002861029624297,
  'weighted_share_copay0': 0.0,
  'weighted_share_coins': 0.9438215467173743})
Fixing weighted shares calculation

It seems the weighted shares calculation is off, as almost all plans show coinsurance. That likely happened because many plans don't have weights, and I just filled those missing with 0. I’ll fix this by computing the weighted shares only using the plans with a weight greater than 0.

Computing weighted summary with valid weights
def weighted_summary(df, copay_yn_col, copay_max_col, coins_yn_col, coins_max_col, weight_col): d=df.copy() d['ben_cov']=pd.to_numeric(d['pbp_a_ben_cov'], errors='coerce') d=d[d['ben_cov']==1] w=pd.to_numeric(d[weight_col], errors='coerce') d=d[w.notna() & (w>0)] w=w[w.notna() & (w>0)] d[copay_yn_col]=pd.to_numeric(d[copay_yn_col], errors='coerce') d[coins_yn_col]=pd.to_numeric(d[coins_yn_col], errors='coerce') d[copay_max_col]=pd.to_numeric(d[copay_max_col], errors='coerce') d[coins_max_col]=pd.to_numeric(d[coins_max_col], errors='coerce') w_total=w.sum() def wshare(mask): return float(w[mask].sum()/w_total) if w_total>0 else np.nan ws={ 'n_weighted_plans': len(d), 'weighted_share_copay': wshare(d[copay_yn_col]==1), 'weighted_share_copay0': wshare((d[copay_yn_col]==1)&(d[copay_max_col]==0)), 'weighted_share_coins': wshare(d[coins_yn_col]==1), 'weighted_median_copay_pos': None } # Weighted median among plans with copay>0 is tricky. We'll compute weighted median of copay max among those with copay_yn==1 copay_df=d[(d[copay_yn_col]==1) & d[copay_max_col].notna()] if len(copay_df)>0: vals=copay_df[copay_max_col].values weights=w[copay_df.index].values # weighted median order=np.argsort(vals) vals_sorted=vals[order]; weights_sorted=weights[order] cum=np.cumsum(weights_sorted) cutoff=0.5*weights_sorted.sum() ws['weighted_median_copay']=float(vals_sorted[np.searchsorted(cum, cutoff)]) coins_df=d[(d[coins_yn_col]==1) & d[coins_max_col].notna()] if len(coins_df)>0: vals=coins_df[coins_max_col].values weights=w[coins_df.index].values order=np.argsort(vals) vals_sorted=vals[order]; weights_sorted=weights[order] cum=np.cumsum(weights_sorted) cutoff=0.5*weights_sorted.sum() ws['weighted_median_coinsurance']=float(vals_sorted[np.searchsorted(cum, cutoff)]) return ws pcp_w=weighted_summary(b7m,'pbp_b7a_copay_yn','pbp_b7a_copay_amt_mc_max','pbp_b7a_coins_yn','pbp_b7a_coins_pct_mc_max','pbp_a_est_memb_num') spec_w=weighted_summary(b7m,'pbp_b7d_copay_yn','pbp_b7d_copay_amt_mc_max','pbp_b7d_coins_yn','pbp_b7d_coins_pct_mc_max','pbp_a_est_memb_num') pcp_w, spec_w
({'n_weighted_plans': 1048,
  'weighted_share_copay': 0.0044886253565546924,
  'weighted_share_copay0': 0.0,
  'weighted_share_coins': 0.9431863232285507,
  'weighted_median_copay_pos': None,
  'weighted_median_copay': 15.0,
  'weighted_median_coinsurance': 20.0},
 {'n_weighted_plans': 1048,
  'weighted_share_copay': 0.017002861029624297,
  'weighted_share_copay0': 0.0,
  'weighted_share_coins': 0.9438215467173743,
  'weighted_median_copay_pos': None,
  'weighted_median_copay': 15.0,
  'weighted_median_coinsurance': 20.0})
Analyzing enrollment data and discrepancies

It looks like most of the enrollment is shown in coinsurance plans, but that seems odd since many MA plans actually have copays, not coinsurance. Could be related to how "Medicare-cost-sharing" is defined, especially for provider services. Some plans, like PPOs, may apply coinsurance for specialists or PCPs, but many HMO plans likely have fixed copays. It's worth noting that 39% of the plans have a $0 copay.

Clarifying copay and coinsurance distributions

Alright, so the share_copay includes all plans with a copay, but share_copay0 is just those with a $0 copay. It seems like 44.6% have a copay, many of which are $0, and 27.3% have coinsurance. About 28% might have unspecified cost shares (possibly due to "Not covered"). I’ll now compute the distribution of copay amounts, including zeros for PCP and specialist services, and calculate the most common values for both.

Computing distribution of PCP and specialist copays
def top_copays(df, yn_col, amt_col, topn=10): d=df.copy() d['ben_cov']=pd.to_numeric(d['pbp_a_ben_cov'], errors='coerce') d=d[d['ben_cov']==1] d[yn_col]=pd.to_numeric(d[yn_col], errors='coerce') d[amt_col]=pd.to_numeric(d[amt_col], errors='coerce') d=d[d[yn_col]==1] vc=d[amt_col].value_counts(dropna=True).head(topn) return vc top_pcp=top_copays(b7m,'pbp_b7a_copay_yn','pbp_b7a_copay_amt_mc_max', topn=12) top_spec=top_copays(b7m,'pbp_b7d_copay_yn','pbp_b7d_copay_amt_mc_max', topn=12) top_pcp, top_spec
(pbp_b7a_copay_amt_mc_max
 0.0     2876
 5.0      182
 10.0     142
 15.0      54
 20.0      35
 25.0       7
 35.0       5
 7.0        1
 50.0       1
 6.0        1
 40.0       1
 19.0       1
 Name: count, dtype: int64,
 pbp_b7d_copay_amt_mc_max
 35.0    697
 30.0    595
 40.0    554
 25.0    525
 45.0    473
 20.0    358
 0.0     345
 50.0    291
 15.0    231
 10.0    201
 55.0    109
 5.0      79
 Name: count, dtype: int64)
Inspecting inpatient hospital and ER copay data

Alright, for the inpatient hospital copay, it looks like the typical copay is per day for the first 1-5 days or a per-stay fee. I'll examine the dictionary for the pbp_b1a_inpat_hosp file to identify relevant columns, like the minimum and maximum copay amounts, plus any intervals. Let's check it out and identify key data points.

Computing inpatient hospital copay details
df_b1a=df_dict[df_dict['FILE'].str.lower()=='pbp_b1a_inpat_hosp'] df_b1a['TITLE'].dropna().unique()[:40], df_b1a.shape
(array(['H Number', 'Plan ID', 'Segment ID', 'Coverage Criteria',
        'Plan Type', 'Organization Type', 'Bid ID', 'Version Number',
        'IHA Supp Benefits YN', 'IHA (1a) Supp Benefits',
        'IHA Ben Desc AD AMO', 'IHA Ben Desc AD Lim YN',
        'IHA Ben Desc AD Amt', 'IHA Ben Desc NMCS AMO',
        'IHA Ben Desc UP AMO', 'IHA Max Enr YN', 'IHA Max Enr Amt',
        'IHA Max Enr Per', 'IHA Max Enr Per Desc',
        'IHA Cost Share Tiers Vary YN', 'IHA Cost Sharing Tiers',
        'IHA Cost Shr Tier Low Num', 'IHA Coinsurance YN',
        'IHA Med Def Coins Cost Shrs YN', 'IHA MCS Coins Pct',
        'IHA MCS Coins Interval Num', 'IHA MCS Coins Pct Intrvl 1',
        'IHA MCS Coins Bgn Day Intrvl 1', 'IHA MCS Coins End Day Intrvl 1',
        'IHA MCS Coins Pct Intrvl 2', 'IHA MCS Coins Bgn Day Intrvl 2',
        'IHA MCS Coins End Day Intrvl 2', 'IHA MCS Coins Pct Intrvl 3',
        'IHA MCS Coins Bgn Day Intrvl 3', 'IHA MCS Coins End Day Intrvl 3',
        'IHA LRD Coins Interval Num', 'IHA LRD Coins Pct Intrvl 1',
        'IHA LRD Coins Bgn Day Intrvl 1', 'IHA LRD Coins End Day Intrvl 1',
        'IHA LRD Coins Pct Intrvl 2'], dtype=object),
 (480, 10))
Filtering for common inpatient hospital copay data

There are many variables here, including coinsurance intervals, which might complicate things. For our task, we just need the common copay amounts per day for inpatient hospital stays. I'll filter the data for titles containing "Copay" to narrow things down and get the most relevant information.

Filtering copay-related titles
df_b1a[df_b1a['TITLE'].astype(str).str.contains('Copay', case=False, na=False)][['NAME','TITLE','FIELD_TITLE']].head(40)
                               NAME                           TITLE  \
240                pbp_b1a_copay_yn                IHA Copayment YN   
242   pbp_b1a_mc_copay_cstshr_yn_t1  IHA Med Def Copay Cost Shrs YN   
244        pbp_b1a_copay_mcs_amt_t1               IHA MCS Copay Amt   
245    pbp_b1a_copay_mcs_int_num_t1      IHA MCS Copay Interval Num   
249   pbp_b1a_copay_mcs_amt_int1_t1    IHA MCS Copay Amt Interval 1   
250  pbp_b1a_copay_mcs_bgnd_int1_t1  IHA MCS Copay Bgn Day Intrvl 1   
251  pbp_b1a_copay_mcs_endd_int1_t1  IHA MCS Copay End Day Intrvl 1   
252   pbp_b1a_copay_mcs_amt_int2_t1    IHA MCS Copay Amt Interval 2   
253  pbp_b1a_copay_mcs_bgnd_int2_t1  IHA MCS Copay Bgn Day Intrvl 2   
254  pbp_b1a_copay_mcs_endd_int2_t1  IHA MCS Copay End Day Intrvl 2   
255   pbp_b1a_copay_mcs_amt_int3_t1    IHA MCS Copay Amt Interval 3   
256  pbp_b1a_copay_mcs_bgnd_int3_t1  IHA MCS Copay Bgn Day Intrvl 3   
257  pbp_b1a_copay_mcs_endd_int3_t1  IHA MCS Copay End Day Intrvl 3   
258   pbp_b1a_mc_copay_cstshr_yn_t2  IHA Med Def Copay Cost Shrs YN   
260        pbp_b1a_copay_mcs_amt_t2               IHA MCS Copay Amt   
261    pbp_b1a_copay_mcs_int_num_t2      IHA MCS Copay Interval Num   
265   pbp_b1a_copay_mcs_amt_int1_t2    IHA MCS Copay Amt Interval 1   
266  pbp_b1a_copay_mcs_bgnd_int1_t2  IHA MCS Copay Bgn Day Intrvl 1   
267  pbp_b1a_copay_mcs_endd_int1_t2  IHA MCS Copay End Day Intrvl 1   
268   pbp_b1a_copay_mcs_amt_int2_t2    IHA MCS Copay Amt Interval 2   
269  pbp_b1a_copay_mcs_bgnd_int2_t2  IHA MCS Copay Bgn Day Intrvl 2   
270  pbp_b1a_copay_mcs_endd_int2_t2  IHA MCS Copay End Day Intrvl 2   
271   pbp_b1a_copay_mcs_amt_int3_t2    IHA MCS Copay Amt Interval 3   
272  pbp_b1a_copay_mcs_bgnd_int3_t2  IHA MCS Copay Bgn Day Intrvl 3   
273  pbp_b1a_copay_mcs_endd_int3_t2  IHA MCS Copay End Day Intrvl 3   
274   pbp_b1a_mc_copay_cstshr_yn_t3  IHA Med Def Copay Cost Shrs YN   
276        pbp_b1a_copay_mcs_amt_t3               IHA MCS Copay Amt   
277    pbp_b1a_copay_mcs_int_num_t3      IHA MCS Copay Interval Num   
281   pbp_b1a_copay_mcs_amt_int1_t3    IHA MCS Copay Amt Interval 1   
282  pbp_b1a_copay_mcs_bgnd_int1_t3  IHA MCS Copay Bgn Day Intrvl 1   
283  pbp_b1a_copay_mcs_endd_int1_t3  IHA MCS Copay End Day Intrvl 1   
284   pbp_b1a_copay_mcs_amt_int2_t3    IHA MCS Copay Amt Interval 2   
285  pbp_b1a_copay_mcs_bgnd_int2_t3  IHA MCS Copay Bgn Day Intrvl 2   
286  pbp_b1a_copay_mcs_endd_int2_t3  IHA MCS Copay End Day Intrvl 2   
287   pbp_b1a_copay_mcs_amt_int3_t3    IHA MCS Copay Amt Interval 3   
288  pbp_b1a_copay_mcs_bgnd_int3_t3  IHA MCS Copay Bgn Day Intrvl 3   
289  pbp_b1a_copay_mcs_endd_int3_t3  IHA MCS Copay End Day Intrvl 3   
290    pbp_b1a_copay_lrd_int_num_t1      IHA LRD Copay Interval Num   
294   pbp_b1a_copay_lrd_amt_int1_t1    IHA LRD Copay Amt Interval 1   
295  pbp_b1a_copay_lrd_bgnd_int1_t1  IHA LRD Copay Bgn Day Intrvl 1   

                                           FIELD_TITLE  
240                              Is there a copayment?  
242  Do you charge the Medicare-defined cost share ...  
244                Copayment for Medicare-covered stay  
245  Number of day intervals for Medicare-covered stay  
249                           Copayment Amt Interval 1  
250                               Begin Day Interval 1  
251                                 End Day Interval 1  
252                           Copayment Amt Interval 2  
253                               Begin Day Interval 2  
254                                 End Day Interval 2  
255                           Copayment Amt Interval 3  
256                               Begin Day Interval 3  
257                                 End Day Interval 3  
258  Do you charge the Medicare-defined cost share ...  
260                Copayment for Medicare-covered stay  
261  Number of day intervals for Medicare-covered stay  
265                           Copayment Amt Interval 1  
266                               Begin Day Interval 1  
267                                 End Day Interval 1  
268                           Copayment Amt Interval 2  
269                               Begin Day Interval 2  
270                                 End Day Interval 2  
271                           Copayment Amt Interval 3  
272                               Begin Day Interval 3  
273                                 End Day Interval 3  
274  Do you charge the Medicare-defined cost share ...  
276                Copayment for Medicare-covered stay  
277  Number of day intervals for Medicare-covered stay  
281                           Copayment Amt Interval 1  
282                               Begin Day Interval 1  
283                                 End Day Interval 1  
284                           Copayment Amt Interval 2  
285                               Begin Day Interval 2  
286                                 End Day Interval 2  
287                           Copayment Amt Interval 3  
288                               Begin Day Interval 3  
289                                 End Day Interval 3  
290  Tier 1: Day intervals for Medicare-covered lif...  
294                           Copayment Amt Interval 1  
295              Lifetime Reserve Begin Day Interval 1  
Focusing on day 1 inpatient copay distribution

Okay, for inpatient hospital costs, I want to focus on the typical day 1 interval amounts (e.g., days 1-5). I'll read the file, zero in on the tier 1 "interval1" amount, and consider both the start and end days. Many plans use a daily copay for the first few days, so I’ll compute the distribution accordingly.

Reading inpatient hospital data for interval analysis
b1a_path="/mnt/data/pbp_b1a_inpat_hosp.txt" with open(b1a_path,'wb') as f: f.write(zf.read('pbp_b1a_inpat_hosp.txt')) b1a=pd.read_csv(b1a_path, sep='\t', dtype=str, low_memory=False) b1a.shape, b1a.columns[:30]
((7570, 300),
 Index(['pbp_a_hnumber', 'pbp_a_plan_identifier', 'segment_id', 'pbp_a_ben_cov',
        'pbp_a_plan_type', 'orgtype', 'bid_id', 'version', 'pbp_b1a_bendesc_yn',
        'pbp_b1a_bendesc_ad_up_nmcs', 'pbp_b1a_bendesc_amo_ad',
        'pbp_b1a_bendesc_lim_ad', 'pbp_b1a_bendesc_amt_ad',
        'pbp_b1a_bendesc_amo_nmcs', 'pbp_b1a_bendesc_amo_up',
        'pbp_b1a_maxenr_yn', 'pbp_b1a_maxenr_amt', 'pbp_b1a_maxenr_per',
        'pbp_b1a_maxenr_per_d', 'pbp_b1a_cost_vary_tiers_yn',
        'pbp_b1a_cost_vary_tier_num', 'pbp_b1a_cost_vary_low_tier',
        'pbp_b1a_coins_yn', 'pbp_b1a_mc_coins_cstshr_yn_t1',
        'pbp_b1a_coins_mcs_pct_t1', 'pbp_b1a_coins_mcs_int_num_t1',
        'pbp_b1a_coins_mcs_pct_int1_t1', 'pbp_b1a_coins_mcs_bgnd_int1_t1',
        'pbp_b1a_coins_mcs_endd_int1_t1', 'pbp_b1a_coins_mcs_pct_int2_t1'],
       dtype='object'))
Locating copay columns in b1a

I need to find the copay-related columns in file b1a. I’ll locate those columns to focus on the relevant copay data. Once I have them, I'll be able to compute the necessary statistics and distributions for the inpatient hospital copays.

Locating copay columns in dataset
[c for c in b1a.columns if 'copay_mcs_amt_int1' in c][:10], [c for c in b1a.columns if c.startswith('pbp_b1a_copay')][:20]
(['pbp_b1a_copay_mcs_amt_int1_t1',
  'pbp_b1a_copay_mcs_amt_int1_t2',
  'pbp_b1a_copay_mcs_amt_int1_t3'],
 ['pbp_b1a_copay_yn',
  'pbp_b1a_copay_mcs_amt_t1',
  'pbp_b1a_copay_mcs_int_num_t1',
  'pbp_b1a_copay_mcs_amt_int1_t1',
  'pbp_b1a_copay_mcs_bgnd_int1_t1',
  'pbp_b1a_copay_mcs_endd_int1_t1',
  'pbp_b1a_copay_mcs_amt_int2_t1',
  'pbp_b1a_copay_mcs_bgnd_int2_t1',
  'pbp_b1a_copay_mcs_endd_int2_t1',
  'pbp_b1a_copay_mcs_amt_int3_t1',
  'pbp_b1a_copay_mcs_bgnd_int3_t1',
  'pbp_b1a_copay_mcs_endd_int3_t1',
  'pbp_b1a_copay_mcs_amt_t2',
  'pbp_b1a_copay_mcs_int_num_t2',
  'pbp_b1a_copay_mcs_amt_int1_t2',
  'pbp_b1a_copay_mcs_bgnd_int1_t2',
  'pbp_b1a_copay_mcs_endd_int1_t2',
  'pbp_b1a_copay_mcs_amt_int2_t2',
  'pbp_b1a_copay_mcs_bgnd_int2_t2',
  'pbp_b1a_copay_mcs_endd_int2_t2'])
Computing distribution for tier1 per-day copay

I’ll compute the distribution for tier1's per-day copay (amt_int1_t1) across the first interval, filtering for Part A/B coverage. I’ll focus on plans with copay_yn marked as 1 and a start day of int1 as 1. Then, I’ll analyze the typical end day, likely around day 5. Let’s proceed.

Computing tier1 interval1 copay distribution for plans
d=b1a.copy() d['ben_cov']=pd.to_numeric(d['pbp_a_ben_cov'], errors='coerce') d=d[d['ben_cov']==1] for col in ['pbp_b1a_copay_yn','pbp_b1a_copay_mcs_amt_int1_t1','pbp_b1a_copay_mcs_bgnd_int1_t1','pbp_b1a_copay_mcs_endd_int1_t1', 'pbp_b1a_coins_yn','pbp_b1a_coins_mcs_pct_int1_t1','pbp_b1a_coins_mcs_endd_int1_t1']: d[col]=pd.to_numeric(d[col], errors='coerce') copay_plans=d[d['pbp_b1a_copay_yn']==1] # interval1 starting day 1 interval1=copay_plans[copay_plans['pbp_b1a_copay_mcs_bgnd_int1_t1']==1] interval1[['pbp_b1a_copay_mcs_amt_int1_t1','pbp_b1a_copay_mcs_endd_int1_t1']].describe()
       pbp_b1a_copay_mcs_amt_int1_t1  pbp_b1a_copay_mcs_endd_int1_t1
count                    4200.000000                     4200.000000
mean                      307.101667                        6.156190
std                       109.186550                        5.961885
min                         0.000000                        1.000000
25%                       250.000000                        5.000000
50%                       325.000000                        6.000000
75%                       380.000000                        6.000000
max                      1092.000000                       90.000000
Analyzing end day distribution

The median end day looks like 6, which suggests many plans charge a per-day copay for days 1-5 or 1-6. I’m seeing frequent entries like "days 1-5 $XXX/day," which supports end day 5 being common. So, I'll focus on showing the frequency of the typical end days.

Displaying common end day frequencies and amounts
end_freq=interval1['pbp_b1a_copay_mcs_endd_int1_t1'].value_counts().head(10) amt_freq=interval1['pbp_b1a_copay_mcs_amt_int1_t1'].value_counts().head(10) end_freq, amt_freq
(pbp_b1a_copay_mcs_endd_int1_t1
 5.0     1635
 6.0     1153
 7.0      762
 4.0      310
 8.0      140
 10.0      74
 3.0       59
 90.0      20
 2.0       19
 9.0       19
 Name: count, dtype: int64,
 pbp_b1a_copay_mcs_amt_int1_t1
 350.0    330
 325.0    239
 295.0    238
 395.0    197
 275.0    178
 375.0    168
 300.0    164
 250.0    143
 225.0    113
 425.0    109
 Name: count, dtype: int64)
Finding emergency room copay data

The common inpatient per-day copay ranges between $250-$395 for the first 4-7 days, which is good info. Next, I need to look up emergency room copay, likely under outpatient hospital. I’ll start by checking for "emerg" in the available file names like pbp_b4_er_urgent or similar.

Searching for emergency-related files
[f for f in zf.namelist() if 'emerg' in f.lower()][:20]
['pbp_b4_b19b_emerg_urgent_vbid_uf.sas',
 'pbp_b4_b19b_emerg_urgent_vbid_uf.txt',
 'pbp_b4_emerg_urgent.sas',
 'pbp_b4_emerg_urgent.txt']
Checking dictionary for ER and urgent care data

Awesome! I'll use "pbp_b4_emerg_urgent.txt" for emergency room and urgent care info. Next, I’ll take a look at the file’s dictionary to better understand the structure and available data before proceeding. That way, I can make sure I’m targeting the right details.

Inspecting ER-related entries in dictionary
df_b4=df_dict[df_dict['FILE'].str.lower()=='pbp_b4_emerg_urgent'] df_b4[df_b4['TITLE'].astype(str).str.contains('ER', case=False, na=False)][['NAME','TITLE','FIELD_TITLE']].head(20), df_b4['TITLE'].dropna().unique()[:20]
(                            NAME                          TITLE  \
 4421               pbp_a_hnumber                       H Number   
 4424               pbp_a_ben_cov              Coverage Criteria   
 4464                     version                 Version Number   
 4465           pbp_b4a_maxenr_yn          Emerg Care Max Enr YN   
 4467          pbp_b4a_maxenr_amt         Emerg Care Max Enr Amt   
 4468          pbp_b4a_maxenr_per         Emerg Care Max Enr Per   
 4475        pbp_b4a_maxenr_per_d    Emerg Care Max Enr Per Desc   
 4476            pbp_b4a_coins_yn      Emerg Care Coinsurance YN   
 4478    pbp_b4a_coins_pct_mc_min    Emerg Care MC Min Coins Pct   
 4479    pbp_b4a_coins_pct_mc_max    Emerg Care MC Max Coins Pct   
 4480           pbp_b4a_max_visit    Emerg Care Max Visit Amount   
 4481     pbp_b4a_coins_wavdia_yn  Emerg Care MC Coins Waived YN   
 4483     pbp_b4a_coins_wavdia_dh    Emerg Care Coins Waived D/H   
 4485       pbp_b4a_coins_wavd_dh    Emerg Care Coins Waived D/H   
 4486            pbp_b4a_copay_yn        Emerg Care Copayment YN   
 4488    pbp_b4a_copay_amt_mc_min    Emerg Care MC Min Copay Amt   
 4489    pbp_b4a_copay_amt_mc_max    Emerg Care MC Max Copay Amt   
 4490     pbp_b4a_copay_wavdia_yn  Emerg Care MC Copay Waived YN   
 4492  pbp_b4a_copay_wavdia_mi_dh    Emerg Care Copay Waived D/H   
 4494       pbp_b4a_copay_wavd_dh    Emerg Care Copay Waived D/H   
 
                                             FIELD_TITLE  
 4421                                           H Number  
 4424                                  Coverage Criteria  
 4464                                     Version Number  
 4465  Does this plan have a service specific maximum...  
 4467                                        MOOP amount  
 4468                                   MOOP periodicity  
 4475                       MOOP periodicity description  
 4476                            Is there a coinsurance?  
 4478                                Minimum coinsurance  
 4479                                Maximum coinsurance  
 4480                           Maximum per visit amount  
 4481  Is the coinsurance for Medicare-covered benefi...  
 4483  Select either days or hours within which admis...  
 4485                      Enter number of days or hours  
 4486                              Is there a copayment?  
 4488                                  Minimum copayment  
 4489                                  Maximum copayment  
 4490  Is the copayment for Medicare-covered benefits...  
 4492  Select either days or hours within which admis...  
 4494                      Enter number of days or hours  ,
 array(['H Number', 'Plan ID', 'Segment ID', 'Coverage Criteria',
        'Plan Type', 'Organization Type', 'Bid ID', 'Version Number',
        'Emerg Care Max Enr YN', 'Emerg Care Max Enr Amt',
        'Emerg Care Max Enr Per', 'Emerg Care Max Enr Per Desc',
        'Emerg Care Coinsurance YN', 'Emerg Care MC Min Coins Pct',
        'Emerg Care MC Max Coins Pct', 'Emerg Care Max Visit Amount',
        'Emerg Care MC Coins Waived YN', 'Emerg Care Coins Waived D/H',
        'Emerg Care Copayment YN', 'Emerg Care MC Min Copay Amt'],
       dtype=object))
Reading file for ER and urgent care details

It looks like there's emergency care (ER) and urgent care data in what might be the "b4b" file. I'll go ahead and read through the file to see what it contains and how we can compute the necessary data for those categories. Let’s dive in!

Reading and examining emerg care data file
b4_path="/mnt/data/pbp_b4_emerg_urgent.txt" with open(b4_path,'wb') as f: f.write(zf.read('pbp_b4_emerg_urgent.txt')) b4=pd.read_csv(b4_path, sep='\t', dtype=str, low_memory=False) b4.shape, [c for c in b4.columns if c.startswith('pbp_b4a')][:20], [c for c in b4.columns if c.startswith('pbp_b4b')][:20]
((7570, 81),
 ['pbp_b4a_maxenr_yn',
  'pbp_b4a_maxenr_amt',
  'pbp_b4a_maxenr_per',
  'pbp_b4a_maxenr_per_d',
  'pbp_b4a_coins_yn',
  'pbp_b4a_coins_pct_mc_min',
  'pbp_b4a_coins_pct_mc_max',
  'pbp_b4a_max_visit',
  'pbp_b4a_coins_wavdia_yn',
  'pbp_b4a_coins_wavdia_dh',
  'pbp_b4a_coins_wavd_dh',
  'pbp_b4a_copay_yn',
  'pbp_b4a_copay_amt_mc_min',
  'pbp_b4a_copay_amt_mc_max',
  'pbp_b4a_copay_wavdia_yn',
  'pbp_b4a_copay_wavdia_mi_dh',
  'pbp_b4a_copay_wavd_dh',
  'pbp_b4a_deduct_yn'],
 ['pbp_b4b_maxenr_yn',
  'pbp_b4b_maxenr_type',
  'pbp_b4b_maxenr_amt',
  'pbp_b4b_maxenr_per',
  'pbp_b4b_maxenr_per_d',
  'pbp_b4b_coins_yn',
  'pbp_b4b_coins_pct_mc_min',
  'pbp_b4b_coins_pct_mc_max',
  'pbp_b4b_max_visit',
  'pbp_b4b_coins_wavdmc_yn',
  'pbp_b4b_coins_wavd_mcdh',
  'pbp_b4b_coins_wavdmc_dh',
  'pbp_b4b_copay_yn',
  'pbp_b4b_copay_amt_mc_min',
  'pbp_b4b_copay_amt_mc_max',
  'pbp_b4b_deduct_yn',
  'pbp_b4b_copay_wavdia_yn',
  'pbp_b4b_copay_wavd_mcdh',
  'pbp_b4b_copay_wavdmc_dh'])
Computing ER and urgent care distributions

It looks like we’ll be working with "b4a" for emergency and "b4b" for urgent care. My plan is to compute distributions, focusing on things like ER copay medians, and more. Alright, time to get started and crunch those numbers!

Computing emergency room copay statistics
def simple_copay_stats(df, copay_yn_col, copay_max_col): d=df.copy() d['ben_cov']=pd.to_numeric(d['pbp_a_ben_cov'], errors='coerce') d=d[d['ben_cov']==1] d[copay_yn_col]=pd.to_numeric(d[copay_yn_col], errors='coerce') d[copay_max_col]=pd.to_numeric(d[copay_max_col], errors='coerce') cop=d[d[copay_yn_col]==1][copay_max_col].dropna() return { 'share_copay': float((d[copay_yn_col]==1).mean()), 'median': float(cop.median()), 'p25': float(cop.quantile(0.25)), 'p75': float(cop.quantile(0.75)), 'top': cop.value_counts().head(8).to_dict() } er_stats=simple_copay_stats(b4,'pbp_b4a_copay_yn','pbp_b4a_copay_amt_mc_max') uc_stats=simple_copay_stats(b4,'pbp_b4b_copay_yn','pbp_b4b_copay_amt_mc_max') er_stats, uc_stats
({'share_copay': 0.7219749089437475,
  'median': 125.0,
  'p25': 110.0,
  'p75': 125.0,
  'top': {125.0: 1964,
   110.0: 1474,
   140.0: 870,
   90.0: 320,
   120.0: 257,
   100.0: 190,
   135.0: 71,
   75.0: 48}},
 {'share_copay': 0.6755699446917577,
  'median': 45.0,
  'p25': 30.0,
  'p75': 50.0,
  'top': {45.0: 1376,
   55.0: 952,
   40.0: 500,
   30.0: 356,
   35.0: 280,
   25.0: 270,
   50.0: 252,
   0.0: 242}})
Calculating copayments and checking MOOP data

ER

Searching KFF for MOOP details and averages
Searching for KFF 2025 Medicare Advantage MOOP details
Citing copay distribution sources and CMS dataset

I have the KFF analysis for MOOP and cost sharing already, which I'll cite. Now, I need to reference the CMS PBP benefits dataset for our computed copay distributions. I'll search for the CMS PBP benefits page and properly cite the source and the download link. Let's make sure to include those citations correctly.

Searching for CMS PBP Benefits page citations
Comparing MA copays with Medigap and noting Part D caps

I’ll draft a response comparing Medicare Advantage (MA) copays with Medigap, highlighting typical copay ranges using our PBP dataset medians. I'll explain cost-sharing for Medigap Plan G/F, including details about Plan G’s Part B deductible and Plan F’s pre-2020 eligibility. I'll also cover Part D premiums and the 2025 OOP cap under IRA. The focus will remain on answering the user's question about typical copay structures.

Comparing Medicare Advantage and Medigap cost-sharing
# compute overall distribution for specialist copay among copay plans spec_vals = b7m.copy() spec_vals['ben_cov']=pd.to_numeric(spec_vals['pbp_a_ben_cov'], errors='coerce') spec_vals=spec_vals[spec_vals['ben_cov']==1] spec_vals['pbp_b7d_copay_yn']=pd.to_numeric(spec_vals['pbp_b7d_copay_yn'], errors='coerce') spec_vals['pbp_b7d_copay_amt_mc_max']=pd.to_numeric(spec_vals['pbp_b7d_copay_amt_mc_max'], errors='coerce') spec_cop = spec_vals[spec_vals['pbp_b7d_copay_yn']==1]['pbp_b7d_copay_amt_mc_max'].dropna() spec_cop.describe(), spec_cop.median(), spec_cop.quantile(0.25), spec_cop.quantile(0.75)
(count    4524.000000
 mean       29.851238
 std        14.475187
 min         0.000000
 25%        20.000000
 50%        30.000000
 75%        40.000000
 max        85.000000
 Name: pbp_b7d_copay_amt_mc_max, dtype: float64,
 30.0,
 20.0,
 40.0)
Noting copay range for typical plans

The median copay is $30, with most plans around $35. I'll mention that typical copays fall between $30 and $40. For primary care provider (PCP) visits, I’ll compute the same to identify the typical copay range, keeping it relevant to the user's needs.

Computing PCP copay statistics
pcp_vals=b7m.copy() pcp_vals['ben_cov']=pd.to_numeric(pcp_vals['pbp_a_ben_cov'], errors='coerce') pcp_vals=pcp_vals[pcp_vals['ben_cov']==1] pcp_vals['pbp_b7a_copay_yn']=pd.to_numeric(pcp_vals['pbp_b7a_copay_yn'], errors='coerce') pcp_vals['pbp_b7a_copay_amt_mc_max']=pd.to_numeric(pcp_vals['pbp_b7a_copay_amt_mc_max'], errors='coerce') pcp_cop=pcp_vals[pcp_vals['pbp_b7a_copay_yn']==1]['pbp_b7a_copay_amt_mc_max'].dropna() pcp_cop.describe(), pcp_cop.quantile(0.25), pcp_cop.median(), pcp_cop.quantile(0.75)
(count    3309.000000
 mean        1.333636
 std         4.211807
 min         0.000000
 25%         0.000000
 50%         0.000000
 75%         0.000000
 max        60.000000
 Name: pbp_b7a_copay_amt_mc_max, dtype: float64,
 0.0,
 0.0,
 0.0)
Analyzing positive copay subset

For most plans, the copay is $0. But for the subset of plans that include a positive copay, I’ll focus on computing the median. This will help clarify what the typical cost is for those who do have copays, rather than the general $0 copay scenario.

Computing median for positive copay subset
pcp_pos=pcp_cop[pcp_cop>0] pcp_pos.describe(), pcp_pos.quantile(0.25), pcp_pos.median(), pcp_pos.quantile(0.75), pcp_pos.value_counts().head(10)
(count    433.000000
 mean      10.191686
 std        6.734222
 min        5.000000
 25%        5.000000
 50%       10.000000
 75%       10.000000
 max       60.000000
 Name: pbp_b7a_copay_amt_mc_max, dtype: float64,
 5.0,
 10.0,
 10.0,
 pbp_b7a_copay_amt_mc_max
 5.0     182
 10.0    142
 15.0     54
 20.0     35
 25.0      7
 35.0      5
 7.0       1
 50.0      1
 6.0       1
 40.0      1
 Name: count, dtype: int64)
Analyzing PCP copays and coinsurance

For plans that charge a PCP copay, typical amounts range from $5 to $10. I want to calculate what portion of plans have a copay of $0 (with possible coinsurance instead). Among those plans with a copay, 86.9% set the copay to $0. Now, I’ll look into the share of plans that have coinsurance instead, like 20%, and calculate the median coinsurance percentage.

Computing share and median coinsurance for PCP plans
d=pcp_vals d['pbp_b7a_coins_yn']=pd.to_numeric(d['pbp_b7a_coins_yn'], errors='coerce') d['pbp_b7a_coins_pct_mc_max']=pd.to_numeric(d['pbp_b7a_coins_pct_mc_max'], errors='coerce') coins=d[d['pbp_b7a_coins_yn']==1]['pbp_b7a_coins_pct_mc_max'].dropna() coins.describe(), coins.value_counts().head(10)
(count    2024.000000
 mean       20.040020
 std         1.257652
 min         0.000000
 25%        20.000000
 50%        20.000000
 75%        20.000000
 max        35.000000
 Name: pbp_b7a_coins_pct_mc_max, dtype: float64,
 pbp_b7a_coins_pct_mc_max
 20.0    1997
 35.0       8
 17.0       4
 10.0       3
 19.0       2
 28.0       2
 26.0       2
 30.0       2
 14.0       1
 5.0        1
 Name: count, dtype: int64)
Explaining copay vs coinsurance for MA plans

Many MA plans use a 20% coinsurance for PCP visits, meaning patients pay 20% of the contracted rate rather than a fixed copay. This can be lower than a typical copay, but users usually expect a copay. I'll clarify that while plans often have flat copays, some use coinsurance (like Part B coinsurance), and I’ll also look into specialist coinsurance distributions.

Evaluating specialist coinsurance percentage distribution
d=spec_vals d['pbp_b7d_coins_yn']=pd.to_numeric(d['pbp_b7d_coins_yn'], errors='coerce') d['pbp_b7d_coins_pct_mc_max']=pd.to_numeric(d['pbp_b7d_coins_pct_mc_max'], errors='coerce') coins=d[d['pbp_b7d_coins_yn']==1]['pbp_b7d_coins_pct_mc_max'].dropna() coins.describe(), coins.value_counts().head(10)
(count    2159.000000
 mean       20.095415
 std         1.166084
 min        10.000000
 25%        20.000000
 50%        20.000000
 75%        20.000000
 max        35.000000
 Name: pbp_b7d_coins_pct_mc_max, dtype: float64,
 pbp_b7d_coins_pct_mc_max
 20.0    2139
 35.0      10
 30.0       4
 28.0       2
 26.0       2
 10.0       1
 18.0       1
 Name: count, dtype: int64)
Computing inpatient per-day copay distribution

It looks like many plans have a 20% coinsurance, but now I need to focus on inpatient per-day copays. I’ll calculate the median copay and typical range. Then, I’ll work out the distribution based on the amount and the number of days associated with these copays.

Computing inpatient copay median and typical range
# inpatient interval1 amounts for those with copay in acute inpat amt=interval1['pbp_b1a_copay_mcs_amt_int1_t1'].dropna() amt.describe(), amt.quantile(0.25), amt.median(), amt.quantile(0.75)
(count    4200.000000
 mean      307.101667
 std       109.186550
 min         0.000000
 25%       250.000000
 50%       325.000000
 75%       380.000000
 max      1092.000000
 Name: pbp_b1a_copay_mcs_amt_int1_t1, dtype: float64,
 250.0,
 325.0,
 380.0)
Explaining MA vs Medigap cost-sharing

I’ll clarify common copays for inpatient stays (about $300-$400/day for the first 4-7 days). Afterward, some plans may charge $0 until the MOOP is reached.

Then, I’ll confirm user’s theory about MA and Medigap cost-sharing, explaining that Medigap plans cover most costs, but premiums and deductibles still apply. I’ll also mention MA’s integrated Part D with its out-of-pocket cap of $2,000 starting 2025. Lastly, I'll address premiums for Medigap and cost-sharing comparisons between the two.

Explaining MA and Medigap cost-sharing

To clarify:

  • How MA cost-sharing is built: includes copays for services and an annual Maximum Out-of-Pocket (MOOP).

  • Typical amounts (nationwide): PCP copay is $0 or $5-$10, specialists range $30-$40, urgent care $45, ER $125, and inpatient $250-$395/day for the first few days (2025 data from CMS PBP).

While ranges can vary by age and state, I’ll stick with typical copay details for 2025.

Contrast with Medigap
  • Medigap Plan F/G covers deductibles and coinsurance, offering near-first-dollar coverage. However, there’s a premium versus utilization tradeoff, and no network restrictions.

  • MA, as managed care, has point-of-service cost-sharing, while Medigap is prepaying premiums for minimal copays. Some Medigap plans like Plan N may have copays, but Plan F/G is nearly first-dollar.

I’ll check Medicare.gov for Plan G coverage citations.

Clarifying Medicare Advantage and Medigap cost-sharing
Citing from authoritative sources

For Medigap Plan G, I’ll cite Medicare.gov’s plan comparison and the CMS Medigap guide for details on the lack of Part B deductible coverage. I’ll also mention that while Part D premiums can be low, MA often includes drug coverage, sometimes with a $0 premium. I’ll use the CMS PBP dataset for cost-sharing info.

Clarifying dataset methodology

We’ll explain the methodology by citing the CMS PBP Benefits file for 2025, highlighting that our dataset includes all plans, including SNPs. However, for better alignment with KFF style, we’ll exclude SNP and non-employer group plans by using the special_need_flag in section A, filtering to only general enrollment plans.

Inspecting special need plan exclusions
secA_key['pbp_a_special_need_flag'].value_counts().head(10), secA_key['pbp_a_eghp_yn'].value_counts().head(10)
(pbp_a_special_need_flag
 2    6817
 1    1511
 Name: count, dtype: int64,
 pbp_a_eghp_yn
 2    6558
 1    1770
 Name: count, dtype: int64)
Checking values for special need flag

I need to double-check the codes for the pbp_a_special_need_flag. They’re likely coded as 1/2 or Yes/No, but I’ll have to confirm. Let me look into the dictionary and retrieve the relevant row from the df_dict to clarify the exact values used.

Checking special need flag codes in dictionary
row=df_dict[(df_dict['FILE'].str.lower()=='pbp_section_a') & (df_dict['NAME'].str.lower()=='pbp_a_special_need_flag')] row[['NAME','TITLE','CODES','CODE_VALUES']].head(1)
                          NAME                      TITLE CODES CODE_VALUES
18171  pbp_a_special_need_flag  SNP Special Needs Plan YN     1         Yes
Confirming code meanings

It looks like code 1 corresponds to "yes," so I'll assume code 2 means "no." The same likely applies to pbp_a_eghp_yn. I'll need to double-check the values for this as well to be certain. Let's review the dictionary to get the full picture.

Extracting specific row values from data
row=df_dict[(df_dict['FILE'].str.lower()=='pbp_section_a') & (df_dict['NAME'].str.lower()=='pbp_a_eghp_yn')] row[['NAME','TITLE','CODES','CODE_VALUES']].head(2)
                NAME         TITLE CODES CODE_VALUES
18162  pbp_a_eghp_yn  EGHP Plan YN     1         Yes
18163  pbp_a_eghp_yn           NaN     2          No
Filtering for non-SNP and non-EGHP plans

It seems like filtering out EGHP "Yes" and SNP "Yes" flags should help approximate non-SNP individual enrollment. I'll compute unweighted statistics based on those flags, excluding special_need_flag == 1 and eghp_yn == 2. B7 has these columns, but they might be missing for some, so I'll check for them.

Checking columns in b7 file
[c for c in b7.columns if c.startswith('pbp_a_')][:30]
['pbp_a_hnumber', 'pbp_a_plan_identifier', 'pbp_a_ben_cov', 'pbp_a_plan_type']
Investigating missing flag data

It seems the missing flags might be due to a mismatch between section A and the merged data. SecA should include flags for all plans, so the issue could stem from missing combinations of hnumberplan_identifiersegment_id, and ben_cov. I'll check the missing rate for the flags to confirm this.

Checking missing rate for flags
b7m['pbp_a_eghp_yn'].notna().mean(), b7m['pbp_a_special_need_flag'].notna().mean(), b7m.shape
(1.0, 1.0, (7570, 258))
Recomputing stats with filters

Now that the flags are available for all plans, I can proceed to recompute the stats by applying the necessary filters. This will help me get the correct breakdown without the missing data influencing the results. Time to run the updated calculations with those exclusions.

Filtering data with specific flags and recomputing stats
def filter_non_snp_non_eghp(df): d=df.copy() d['ben_cov']=pd.to_numeric(d['pbp_a_ben_cov'], errors='coerce') d=d[d['ben_cov']==1] d['pbp_a_eghp_yn']=pd.to_numeric(d['pbp_a_eghp_yn'], errors='coerce') d['pbp_a_special_need_flag']=pd.to_numeric(d['pbp_a_special_need_flag'], errors='coerce') # keep only non-EGHP (2=No) and non-SNP (!=1) d=d[(d['pbp_a_eghp_yn']==2) & (d['pbp_a_special_need_flag']!=1)] return d b7_filtered=filter_non_snp_non_eghp(b7m) pcp_stats_f=summarize_costshare(b7_filtered,'pbp_b7a_copay_yn','pbp_b7a_copay_amt_mc_max','pbp_b7a_coins_yn','pbp_b7a_coins_pct_mc_max') spec_stats_f=summarize_costshare(b7_filtered,'pbp_b7d_copay_yn','pbp_b7d_copay_amt_mc_max','pbp_b7d_coins_yn','pbp_b7d_coins_pct_mc_max') top_pcp_f=top_copays(b7_filtered,'pbp_b7a_copay_yn','pbp_b7a_copay_amt_mc_max', topn=10) top_spec_f=top_copays(b7_filtered,'pbp_b7d_copay_yn','pbp_b7d_copay_amt_mc_max', topn=10) pcp_stats_f, spec_stats_f, top_pcp_f, top_spec_f
({'n_total': 4571,
  'share_copay': 0.6086195580835704,
  'share_copay0': 0.5169547145044848,
  'share_coins': 0.004594180704441042,
  'copay_median_all': 0.0,
  'copay_p25': 0.0,
  'copay_p75': 0.0,
  'copay_median_pos': 10.0,
  'copay_pos_p25': 5.0,
  'copay_pos_p75': 13.0,
  'coinsurance_median': 20.0,
  'coinsurance_p75': 20.0,
  'weighted_share_copay': nan,
  'weighted_share_copay0': nan,
  'weighted_share_coins': nan},
 {'n_total': 4571,
  'share_copay': 0.8687376941588274,
  'share_copay0': 0.03959746226208707,
  'share_coins': 0.005031721723911617,
  'copay_median_all': 35.0,
  'copay_p25': 25.0,
  'copay_p75': 40.0,
  'copay_median_pos': 35.0,
  'copay_pos_p25': 25.0,
  'copay_pos_p75': 40.0,
  'coinsurance_median': 20.0,
  'coinsurance_p75': 20.0,
  'weighted_share_copay': nan,
  'weighted_share_copay0': nan,
  'weighted_share_coins': nan},
 pbp_b7a_copay_amt_mc_max
 0.0     2363
 5.0      171
 10.0     140
 15.0      53
 20.0      35
 25.0       7
 35.0       5
 7.0        1
 50.0       1
 6.0        1
 Name: count, dtype: int64,
 pbp_b7d_copay_amt_mc_max
 35.0    660
 30.0    554
 40.0    533
 45.0    459
 25.0    446
 20.0    296
 50.0    281
 0.0     181
 15.0    177
 10.0    142
 Name: count, dtype: int64)
Merging files to compute inpatient and ER stats

The filtering is working as expected. PCP coinsurance is almost nonexistent, and copay is the main cost, which matches the expectation. Specialist copay distribution is unchanged. Now I'll move on to computing inpatient and ER stats with the same filter. For inpatient, I'll merge with secA, and then merge b1a and b4 files.

Merging and filtering inpatient and ER data
# merge b1a and b4 with section A flags def merge_with_secA(df): return df.merge(secA_key[['pbp_a_hnumber','pbp_a_plan_identifier','segment_id','pbp_a_ben_cov','pbp_a_eghp_yn','pbp_a_special_need_flag']], on=['pbp_a_hnumber','pbp_a_plan_identifier','segment_id','pbp_a_ben_cov'], how='left') b1am=merge_with_secA(b1a) b4m=merge_with_secA(b4) b1af=filter_non_snp_non_eghp(b1am) b4f=filter_non_snp_non_eghp(b4m) b1af.shape, b4f.shape
((4571, 303), (4571, 84))
Computing inpatient interval in filtered data

Alright, now that the filtering looks good, I’ll compute the inpatient interval1 using the filtered set. This step should help keep everything consistent with the previous stats, so I can get a clearer picture of the data within the filtered parameters. Let’s proceed.

Computing inpatient interval1 in filtered set
d=b1af.copy() for col in ['pbp_b1a_copay_yn','pbp_b1a_copay_mcs_amt_int1_t1','pbp_b1a_copay_mcs_bgnd_int1_t1','pbp_b1a_copay_mcs_endd_int1_t1']: d[col]=pd.to_numeric(d[col], errors='coerce') copay_plans=d[d['pbp_b1a_copay_yn']==1] interval1=copay_plans[copay_plans['pbp_b1a_copay_mcs_bgnd_int1_t1']==1] amt=interval1['pbp_b1a_copay_mcs_amt_int1_t1'].dropna() amt.describe(), interval1['pbp_b1a_copay_mcs_endd_int1_t1'].value_counts().head(8), amt.value_counts().head(10)
(count    3695.000000
 mean      312.538024
 std       101.774207
 min         0.000000
 25%       262.500000
 50%       325.000000
 75%       380.000000
 max       728.000000
 Name: pbp_b1a_copay_mcs_amt_int1_t1, dtype: float64,
 pbp_b1a_copay_mcs_endd_int1_t1
 5.0     1442
 6.0     1008
 7.0      683
 4.0      277
 8.0      131
 10.0      60
 3.0       50
 9.0       17
 Name: count, dtype: int64,
 pbp_b1a_copay_mcs_amt_int1_t1
 350.0    297
 295.0    221
 325.0    214
 395.0    173
 275.0    157
 375.0    157
 300.0    144
 250.0    123
 425.0    107
 225.0     96
 Name: count, dtype: int64)
Computing ER and urgent care filtered stats

Next, I'm focusing on computing the filtered stats for ER and urgent care. This will help ensure everything remains consistent within the parameters we’ve already set. Once done, I’ll have a clearer picture of the data with these specific filters applied. Let’s proceed with this step!

Calculating ER and urgent care copay statistics
er_stats_f=simple_copay_stats(b4f,'pbp_b4a_copay_yn','pbp_b4a_copay_amt_mc_max') uc_stats_f=simple_copay_stats(b4f,'pbp_b4b_copay_yn','pbp_b4b_copay_amt_mc_max') er_stats_f, uc_stats_f
({'share_copay': 0.9070225333625027,
  'median': 125.0,
  'p25': 110.0,
  'p75': 125.0,
  'top': {125.0: 1831,
   110.0: 861,
   140.0: 736,
   120.0: 203,
   90.0: 177,
   100.0: 165,
   135.0: 58,
   75.0: 33}},
 {'share_copay': 0.8713629402756509,
  'median': 45.0,
  'p25': 30.0,
  'p75': 55.0,
  'top': {55.0: 883,
   45.0: 882,
   40.0: 442,
   30.0: 329,
   35.0: 259,
   50.0: 236,
   25.0: 220,
   65.0: 206}})
Referencing CMS and MOOP data

Now

Crafting response with CMS PBP Benefits and MOOP
Thought for 9m 56s

Done

Sources·115